GPU Accelerated Molecular Docking Simulation with Genetic Algorithms

dc.contributor.authorBozkuş, Zeki
dc.contributor.authorBozkuş, Zeki
dc.contributor.authorFraguela, Basilio B.
dc.date.accessioned2019-06-27T08:02:07Z
dc.date.available2019-06-27T08:02:07Z
dc.date.issued2016
dc.departmentFakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.description.abstractReceptor-Ligand Molecular Docking is a very computationally expensive process used to predict possible drug candidates for many diseases. A faster docking technique would help life scientists to discover better therapeutics with less effort and time. The requirement of long execution times may mean using a less accurate evaluation of drug candidates potentially increasing the number of false-positive solutions which require expensive chemical and biological procedures to be discarded. Thus the development of fast and accurate enough docking algorithms greatly reduces wasted drug development resources helping life scientists discover better therapeutics with less effort and time. In this article we present the GPU-based acceleration of our recently developed molecular docking code. We focus on offloading the most computationally intensive part of any docking simulation which is the genetic algorithm to accelerators as it is very well suited to them. We show how the main functions of the genetic algorithm can be mapped to the GPU. The GPU-accelerated system achieves a speedup of around similar to 14x with respect to a single CPU core. This makes it very productive to use GPU for small molecule docking cases.en_US]
dc.identifier.citation5
dc.identifier.doi10.1007/978-3-319-31153-1_10en_US
dc.identifier.endpage146
dc.identifier.isbn9783319311531
dc.identifier.issn0302-9743en_US
dc.identifier.issn1611-3349en_US
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.scopus2-s2.0-84962246245en_US
dc.identifier.scopusqualityQ2
dc.identifier.startpage134en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12469/554
dc.identifier.urihttps://doi.org/10.1007/978-3-319-31153-1_10
dc.identifier.volume9598en_US
dc.identifier.wosWOS:000467438600010en_US
dc.identifier.wosqualityN/A
dc.institutionauthorAltuntaş, Serkanen_US
dc.institutionauthorBozkuş, Zekien_US
dc.language.isoenen_US
dc.publisherSpringer International Publishing Agen_US
dc.relation.journalEvoApplications 2016: Applications of Evolutionary Computationen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectGPUen_US
dc.subjectOpenCLen_US
dc.subjectMolecular Dockingen_US
dc.subjectGenetic Algorithmen_US
dc.subjectParallelizationen_US
dc.titleGPU Accelerated Molecular Docking Simulation with Genetic Algorithmsen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublication14914cc2-2a09-46be-a429-12ef3a6f5456
relation.isAuthorOfPublication.latestForDiscovery14914cc2-2a09-46be-a429-12ef3a6f5456

Files