Gpu Accelerated Molecular Docking Simulation With Genetic Algorithms

dc.contributor.author Altuntaş, Serkan
dc.contributor.author Bozkuş, Zeki
dc.contributor.author Bozkuş, Zeki
dc.contributor.author Fraguela, Basilio B.
dc.contributor.other Computer Engineering
dc.date.accessioned 2019-06-27T08:02:07Z
dc.date.available 2019-06-27T08:02:07Z
dc.date.issued 2016
dc.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
dc.description.abstract Receptor-Ligand Molecular Docking is a very computationally expensive process used to predict possible drug candidates for many diseases. A faster docking technique would help life scientists to discover better therapeutics with less effort and time. The requirement of long execution times may mean using a less accurate evaluation of drug candidates potentially increasing the number of false-positive solutions which require expensive chemical and biological procedures to be discarded. Thus the development of fast and accurate enough docking algorithms greatly reduces wasted drug development resources helping life scientists discover better therapeutics with less effort and time. In this article we present the GPU-based acceleration of our recently developed molecular docking code. We focus on offloading the most computationally intensive part of any docking simulation which is the genetic algorithm to accelerators as it is very well suited to them. We show how the main functions of the genetic algorithm can be mapped to the GPU. The GPU-accelerated system achieves a speedup of around similar to 14x with respect to a single CPU core. This makes it very productive to use GPU for small molecule docking cases. en_US]
dc.identifier.citationcount 5
dc.identifier.doi 10.1007/978-3-319-31153-1_10 en_US
dc.identifier.endpage 146
dc.identifier.isbn 9783319311531
dc.identifier.issn 0302-9743 en_US
dc.identifier.issn 1611-3349 en_US
dc.identifier.issn 0302-9743
dc.identifier.issn 1611-3349
dc.identifier.scopus 2-s2.0-84962246245 en_US
dc.identifier.scopusquality Q2
dc.identifier.startpage 134 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/554
dc.identifier.uri https://doi.org/10.1007/978-3-319-31153-1_10
dc.identifier.volume 9598 en_US
dc.identifier.wos WOS:000467438600010 en_US
dc.institutionauthor Altuntaş, Serkan en_US
dc.institutionauthor Bozkuş, Zeki en_US
dc.language.iso en en_US
dc.publisher Springer International Publishing Ag en_US
dc.relation.journal EvoApplications 2016: Applications of Evolutionary Computation en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 8
dc.subject GPU en_US
dc.subject OpenCL en_US
dc.subject Molecular Docking en_US
dc.subject Genetic Algorithm en_US
dc.subject Parallelization en_US
dc.title Gpu Accelerated Molecular Docking Simulation With Genetic Algorithms en_US
dc.type Conference Object en_US
dc.wos.citedbyCount 6
dspace.entity.type Publication
relation.isAuthorOfPublication 14914cc2-2a09-46be-a429-12ef3a6f5456
relation.isAuthorOfPublication.latestForDiscovery 14914cc2-2a09-46be-a429-12ef3a6f5456
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files