Istanbul Dam Water Levels Forecasting Using ARIMA Models

dc.contributor.author Sekban, J.
dc.contributor.author Nabil, M.O.M.
dc.contributor.author Alsan, H.F.
dc.contributor.author Arsan, T.
dc.date.accessioned 2023-10-19T15:05:33Z
dc.date.available 2023-10-19T15:05:33Z
dc.date.issued 2022
dc.description 2022 Innovations in Intelligent Systems and Applications Conference, ASYU 2022 --7 September 2022 through 9 September 2022 -- --183936 en_US
dc.description.abstract River, sea, reservoir, and dam water levels are constantly measured by organizations and governmental bodies because of their environmental effects as well as their influence on human behavior. In this study, the monthly dam levels in Istanbul, Turkey, were predicted. Different models and configurations were compared to each other, and the best-performing model was identified. The models were based on conventional auto-regressive models (AR), moving average models (MA), auto-regressive moving average (ARMA), and ARMA with Exogenous variables (ARIMAX). © 2022 IEEE. en_US
dc.identifier.citationcount 1
dc.identifier.doi 10.1109/ASYU56188.2022.9925418 en_US
dc.identifier.isbn 9781665488945
dc.identifier.scopus 2-s2.0-85142696279 en_US
dc.identifier.uri https://doi.org/10.1109/ASYU56188.2022.9925418
dc.identifier.uri https://hdl.handle.net/20.500.12469/4945
dc.khas 20231019-Scopus en_US
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof Proceedings - 2022 Innovations in Intelligent Systems and Applications Conference, ASYU 2022 en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject ARIMA models en_US
dc.subject ARMA en_US
dc.subject Dams en_US
dc.subject forecasting en_US
dc.subject time series prediction en_US
dc.subject water levels en_US
dc.subject Behavioral research en_US
dc.subject Dams en_US
dc.subject Forecasting en_US
dc.subject Reservoirs (water) en_US
dc.subject Time series en_US
dc.subject Time series analysis en_US
dc.subject ARIMA models en_US
dc.subject Autoregressive/moving averages en_US
dc.subject Dam water en_US
dc.subject Istanbul en_US
dc.subject River dams en_US
dc.subject River reservoirs en_US
dc.subject River water en_US
dc.subject Sea water en_US
dc.subject Time series prediction en_US
dc.subject Water level forecasting en_US
dc.subject Water levels en_US
dc.title Istanbul Dam Water Levels Forecasting Using ARIMA Models en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.institutional Arsan, Taner
gdc.author.scopusid 57982966700
gdc.author.scopusid 57983432900
gdc.author.scopusid 55364564400
gdc.author.scopusid 6506505859
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.departmenttemp Sekban, J., Kadir Has University, Mis Department, Istanbul, Turkey; Nabil, M.O.M., Kadir Has University, Computer Engineering Department, Istanbul, Turkey; Alsan, H.F., Kadir Has University, Computer Engineering Department, Istanbul, Turkey; Arsan, T., Kadir Has University, Computer Engineering Department, Istanbul, Turkey en_US
gdc.description.endpage 7
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 1
gdc.description.wosquality N/A
gdc.identifier.openalex W4312990438
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.686861E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Time series
gdc.oaire.keywords Time series analysis
gdc.oaire.keywords forecasting
gdc.oaire.keywords Time series prediction
gdc.oaire.keywords River dams
gdc.oaire.keywords Dam water
gdc.oaire.keywords River water
gdc.oaire.keywords Sea water
gdc.oaire.keywords time series prediction
gdc.oaire.keywords ARIMA models
gdc.oaire.keywords Autoregressive/moving averages
gdc.oaire.keywords water levels
gdc.oaire.keywords River reservoirs
gdc.oaire.keywords Behavioral research
gdc.oaire.keywords Reservoirs (water)
gdc.oaire.keywords Istanbul
gdc.oaire.keywords ARMA
gdc.oaire.keywords Dams
gdc.oaire.keywords Water level forecasting
gdc.oaire.keywords Water levels
gdc.oaire.keywords Forecasting
gdc.oaire.popularity 3.1480436E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0208 environmental biotechnology
gdc.oaire.sciencefields 0207 environmental engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.fwci 0.41
gdc.openalex.normalizedpercentile 0.42
gdc.opencitations.count 0
gdc.plumx.mendeley 10
gdc.plumx.scopuscites 3
gdc.scopus.citedcount 3
relation.isAuthorOfPublication 7959ea6c-1b30-4fa0-9c40-6311259c0914
relation.isAuthorOfPublication.latestForDiscovery 7959ea6c-1b30-4fa0-9c40-6311259c0914
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
4945.pdf
Size:
1.2 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text