A Two-Phase Pattern Generation and Production Planning Procedure for the Stochastic Skiving Process

dc.contributor.author Karaca, Tolga Kudret
dc.contributor.author Samanlioglu, Funda
dc.contributor.author Altay, Ayca
dc.contributor.other Industrial Engineering
dc.contributor.other 05. Faculty of Engineering and Natural Sciences
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2024-06-23T21:37:11Z
dc.date.available 2024-06-23T21:37:11Z
dc.date.issued 2023
dc.description Altay, Ayca/0000-0001-6066-5336; Samanlioglu, Funda/0000-0003-3838-8824 en_US
dc.description.abstract The stochastic skiving stock problem (SSP), a relatively new combinatorial optimization problem, is considered in this paper. The conventional SSP seeks to determine the optimum structure that skives small pieces of different sizes side by side to form as many large items (products) as possible that meet a desired width. This study studies a multiproduct case for the SSP under uncertain demand and waste rate, including products of different widths. This stochastic version of the SSP considers a random demand for each product and a random waste rate during production. A two-stage stochastic programming approach with a recourse action is implemented to study this stochastic NP-hard problem on a large scale. Furthermore, the problem is solved in two phases. In the first phase, the dragonfly algorithm constructs minimal patterns that serve as an input for the next phase. The second phase performs sample-average approximation, solving the stochastic production problem. Results indicate that the two-phase heuristic approach is highly efficient regarding computational run time and provides robust solutions with an optimality gap of 0.3% for the worst-case scenario. In addition, we also compare the performance of the dragonfly algorithm (DA) to the particle swarm optimization (PSO) for pattern generation. Benchmarks indicate that the DA produces more robust minimal pattern sets as the tightness of the problem increases. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1155/2023/9918022
dc.identifier.issn 1687-9724
dc.identifier.issn 1687-9732
dc.identifier.scopus 2-s2.0-85177848887
dc.identifier.uri https://doi.org/10.1155/2023/9918022
dc.identifier.uri https://hdl.handle.net/20.500.12469/5702
dc.language.iso en en_US
dc.publisher Hindawi Ltd en_US
dc.relation.ispartof Applied Computational Intelligence and Soft Computing
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject [No Keyword Available] en_US
dc.title A Two-Phase Pattern Generation and Production Planning Procedure for the Stochastic Skiving Process en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Altay, Ayca/0000-0001-6066-5336
gdc.author.id Samanlioglu, Funda/0000-0003-3838-8824
gdc.author.institutional Samanlıoğlu, Funda
gdc.author.scopusid 57742747500
gdc.author.scopusid 23012602800
gdc.author.scopusid 25122060200
gdc.author.wosid Samanlioglu, Funda/H-9126-2016
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Kadir Has University en_US
gdc.description.departmenttemp [Karaca, Tolga Kudret] Istanbul Topkapı Univ, Dept Comp Engn, TR-34087 Istanbul, Turkiye; [Samanlioglu, Funda] Kadir Has Univ, Dept Ind Engn, TR-34083 Istanbul, Turkiye; [Altay, Ayca] Rutgers State Univ, Dept Ind & Syst Engn, 96 Frelinghuysen Rd, Piscataway, NJ 08540 USA en_US
gdc.description.endpage 23
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 1
gdc.description.volume 2023 en_US
gdc.identifier.openalex W4388441990
gdc.identifier.wos WOS:001106412200001
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.6323608E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Electronic computers. Computer science
gdc.oaire.keywords QA75.5-76.95
gdc.oaire.popularity 2.5439777E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.fwci 0.507
gdc.openalex.normalizedpercentile 0.8
gdc.opencitations.count 0
gdc.plumx.mendeley 4
gdc.plumx.newscount 1
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
gdc.wos.citedcount 1
relation.isAuthorOfPublication 4e74c274-0592-4792-ac57-00061bd273aa
relation.isAuthorOfPublication.latestForDiscovery 4e74c274-0592-4792-ac57-00061bd273aa
relation.isOrgUnitOfPublication 28868d0c-e9a4-4de1-822f-c8df06d2086a
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery 28868d0c-e9a4-4de1-822f-c8df06d2086a

Files