A Two-Phase Pattern Generation and Production Planning Procedure for the Stochastic Skiving Process

dc.authoridAltay, Ayca/0000-0001-6066-5336
dc.authoridSamanlioglu, Funda/0000-0003-3838-8824
dc.authorscopusid57742747500
dc.authorscopusid23012602800
dc.authorscopusid25122060200
dc.authorwosidSamanlioglu, Funda/H-9126-2016
dc.contributor.authorSamanlıoğlu, Funda
dc.contributor.authorSamanlioglu, Funda
dc.contributor.authorAltay, Ayca
dc.date.accessioned2024-06-23T21:37:11Z
dc.date.available2024-06-23T21:37:11Z
dc.date.issued2023
dc.departmentKadir Has Universityen_US
dc.department-temp[Karaca, Tolga Kudret] Istanbul Topkapı Univ, Dept Comp Engn, TR-34087 Istanbul, Turkiye; [Samanlioglu, Funda] Kadir Has Univ, Dept Ind Engn, TR-34083 Istanbul, Turkiye; [Altay, Ayca] Rutgers State Univ, Dept Ind & Syst Engn, 96 Frelinghuysen Rd, Piscataway, NJ 08540 USAen_US
dc.descriptionAltay, Ayca/0000-0001-6066-5336; Samanlioglu, Funda/0000-0003-3838-8824en_US
dc.description.abstractThe stochastic skiving stock problem (SSP), a relatively new combinatorial optimization problem, is considered in this paper. The conventional SSP seeks to determine the optimum structure that skives small pieces of different sizes side by side to form as many large items (products) as possible that meet a desired width. This study studies a multiproduct case for the SSP under uncertain demand and waste rate, including products of different widths. This stochastic version of the SSP considers a random demand for each product and a random waste rate during production. A two-stage stochastic programming approach with a recourse action is implemented to study this stochastic NP-hard problem on a large scale. Furthermore, the problem is solved in two phases. In the first phase, the dragonfly algorithm constructs minimal patterns that serve as an input for the next phase. The second phase performs sample-average approximation, solving the stochastic production problem. Results indicate that the two-phase heuristic approach is highly efficient regarding computational run time and provides robust solutions with an optimality gap of 0.3% for the worst-case scenario. In addition, we also compare the performance of the dragonfly algorithm (DA) to the particle swarm optimization (PSO) for pattern generation. Benchmarks indicate that the DA produces more robust minimal pattern sets as the tightness of the problem increases.en_US
dc.identifier.citation0
dc.identifier.doi10.1155/2023/9918022
dc.identifier.issn1687-9724
dc.identifier.issn1687-9732
dc.identifier.scopus2-s2.0-85177848887
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1155/2023/9918022
dc.identifier.urihttps://hdl.handle.net/20.500.12469/5702
dc.identifier.volume2023en_US
dc.identifier.wosWOS:001106412200001
dc.identifier.wosqualityN/A
dc.language.isoenen_US
dc.publisherHindawi Ltden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject[No Keyword Available]en_US
dc.titleA Two-Phase Pattern Generation and Production Planning Procedure for the Stochastic Skiving Processen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication4e74c274-0592-4792-ac57-00061bd273aa
relation.isAuthorOfPublication.latestForDiscovery4e74c274-0592-4792-ac57-00061bd273aa

Files