A Two-Phase Pattern Generation and Production Planning Procedure for the Stochastic Skiving Process

dc.authorid Altay, Ayca/0000-0001-6066-5336
dc.authorid Samanlioglu, Funda/0000-0003-3838-8824
dc.authorscopusid 57742747500
dc.authorscopusid 23012602800
dc.authorscopusid 25122060200
dc.authorwosid Samanlioglu, Funda/H-9126-2016
dc.contributor.author Karaca, Tolga Kudret
dc.contributor.author Samanlıoğlu, Funda
dc.contributor.author Samanlioglu, Funda
dc.contributor.author Altay, Ayca
dc.contributor.other Industrial Engineering
dc.date.accessioned 2024-06-23T21:37:11Z
dc.date.available 2024-06-23T21:37:11Z
dc.date.issued 2023
dc.department Kadir Has University en_US
dc.department-temp [Karaca, Tolga Kudret] Istanbul Topkapı Univ, Dept Comp Engn, TR-34087 Istanbul, Turkiye; [Samanlioglu, Funda] Kadir Has Univ, Dept Ind Engn, TR-34083 Istanbul, Turkiye; [Altay, Ayca] Rutgers State Univ, Dept Ind & Syst Engn, 96 Frelinghuysen Rd, Piscataway, NJ 08540 USA en_US
dc.description Altay, Ayca/0000-0001-6066-5336; Samanlioglu, Funda/0000-0003-3838-8824 en_US
dc.description.abstract The stochastic skiving stock problem (SSP), a relatively new combinatorial optimization problem, is considered in this paper. The conventional SSP seeks to determine the optimum structure that skives small pieces of different sizes side by side to form as many large items (products) as possible that meet a desired width. This study studies a multiproduct case for the SSP under uncertain demand and waste rate, including products of different widths. This stochastic version of the SSP considers a random demand for each product and a random waste rate during production. A two-stage stochastic programming approach with a recourse action is implemented to study this stochastic NP-hard problem on a large scale. Furthermore, the problem is solved in two phases. In the first phase, the dragonfly algorithm constructs minimal patterns that serve as an input for the next phase. The second phase performs sample-average approximation, solving the stochastic production problem. Results indicate that the two-phase heuristic approach is highly efficient regarding computational run time and provides robust solutions with an optimality gap of 0.3% for the worst-case scenario. In addition, we also compare the performance of the dragonfly algorithm (DA) to the particle swarm optimization (PSO) for pattern generation. Benchmarks indicate that the DA produces more robust minimal pattern sets as the tightness of the problem increases. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1155/2023/9918022
dc.identifier.issn 1687-9724
dc.identifier.issn 1687-9732
dc.identifier.scopus 2-s2.0-85177848887
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1155/2023/9918022
dc.identifier.uri https://hdl.handle.net/20.500.12469/5702
dc.identifier.volume 2023 en_US
dc.identifier.wos WOS:001106412200001
dc.language.iso en en_US
dc.publisher Hindawi Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 1
dc.subject [No Keyword Available] en_US
dc.title A Two-Phase Pattern Generation and Production Planning Procedure for the Stochastic Skiving Process en_US
dc.type Article en_US
dc.wos.citedbyCount 1
dspace.entity.type Publication
relation.isAuthorOfPublication 4e74c274-0592-4792-ac57-00061bd273aa
relation.isAuthorOfPublication.latestForDiscovery 4e74c274-0592-4792-ac57-00061bd273aa
relation.isOrgUnitOfPublication 28868d0c-e9a4-4de1-822f-c8df06d2086a
relation.isOrgUnitOfPublication.latestForDiscovery 28868d0c-e9a4-4de1-822f-c8df06d2086a

Files