Determination of Growth Kinetics and Size Dependent Structural Morphological Optical Characteristics of Sol-Gel Derived Silica Nanoparticles in Silica Matrix

Loading...
Publication Logo

Date

2019

Journal Title

Journal ISSN

Volume Title

Publisher

De Gruyter Poland Sp Zoo

Open Access Color

GOLD

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

Nanocomposite silica thin films made using the sol-gel method were studied. The nano-silica films were prepared using a mixture of tetraethyl orthosilicate (TEOS) deionized water ethanol and ammonia solution. To control the growth of the particles inside the film the nanocomposite silica film was prepared using a mixture of the nano-silica sol and the silica sol. The change in the particle size with the heat treatment temperature ranging from 450 degrees C to 1100 degrees C was investigated. X-ray diffraction (XRD) atomic force microscopy (AFM) scanning electron microscopy (SEM) NKD (refractive index-N extinction coefficient-K and thickness-D) and ultraviolet-visible (UV-Vis) spectrophotometry were used for characterization purposes. The XRD studies showed that the nano-silica thin films were amorphous at all annealing temperatures except for 1100 degrees C. The alpha-cristobalite crystal structure formed at the annealing temperature of 1100 degrees C. Optical parameters such as refractive indices and extinction coefficients were obtained using the NKD analyzer with respect to the annealing temperature of the films. The activation energy and enthalpy of the nanocomposite silica film were evaluated as 22.3 kJ/mol and 14.7 kJ/mol respectively. The cut-off wavelength values were calculated by means of extrapolation of the absorbance spectra estimated using the UV-Vis spectroscopy measurements. A red shift in the absorption threshold of the nanocomposite silica films indicated that the size of the silica nanoparticles increased with an increase of the annealing temperatures from 450 degrees C to 900 degrees C and this confirms the quantum confinement effect in the nanoparticles.

Description

Keywords

Particle size, Silicon dioxide, Sol-gel method, Nanoparticled composite thin films, Nanoparticled composite thin films, Silicon dioxide, Particle size, Sol-gel method

Fields of Science

02 engineering and technology, 0210 nano-technology

Citation

WoS Q

Q4

Scopus Q

Q3
OpenCitations Logo
OpenCitations Citation Count
1

Source

Materials Science-Poland

Volume

37

Issue

1

Start Page

16

End Page

24
PlumX Metrics
Citations

CrossRef : 1

Scopus : 1

Captures

Mendeley Readers : 9

SCOPUS™ Citations

1

checked on Feb 21, 2026

Page Views

6

checked on Feb 21, 2026

Downloads

155

checked on Feb 21, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.0

Sustainable Development Goals