Riemannian Manifold Approach for RIS/IOS-Assisted Wireless Networks Design

dc.contributor.author Li, Bin
dc.contributor.author Guo, Ning
dc.contributor.author Hu, Yulin
dc.contributor.author Panayirci, Erdal
dc.contributor.author Dong, Zhicheng
dc.date.accessioned 2025-11-15T14:46:47Z
dc.date.available 2025-11-15T14:46:47Z
dc.date.issued 2025
dc.description.abstract Reconfigurable Intelligent Surfaces (RIS) and Intelligent Omni-Surfaces (IOS) have emerged as transformative technologies in wireless communications, offering enhanced energy and spectral efficiency. However, the inherent characteristics of RIS/IOS also bring new challenges to the resource allocation design of RIS/IOS-assisted wireless networks, such as the nonconvexity caused by the constant modulus constraint of RIS/IOS phase shift elements and the complexity of jointly designing RIS/IOS phase shifts and base station beamforming. Although existing approaches, such as the max-min algorithm and the alternating optimization algorithm, can address these challenges, they suffer from high computational complexity. This paper systematically analyzes the challenges in the design of RIS/IOS-assisted wireless networks and briefly introduces the principles of Riemannian manifold optimization. To address these complex design challenges, we introduce four pivotal manifolds: the complex circle manifold, sphere manifold, Cholesky manifold, and product manifold, each providing unique solutions for enhancing network performance. Finally, we discuss future research directions for Riemannian manifold methods in the design of RIS/IOS-assisted networks. en_US
dc.description.sponsorship National Key R&D Program of China [2023YFE0206600]; NSFC [62471341]; Fundamental Research Funds for the Central Universities [2042025kf0039] en_US
dc.description.sponsorship This work was supported in part by the National Key R&D Program of China under Grant 2023YFE0206600, in part by the NSFC under Grant 62471341, and in part by the Fundamental Research Funds for the Central Universities under Grant 2042025kf0039. en_US
dc.identifier.doi 10.1109/MWC.2025.3601674
dc.identifier.issn 1536-1284
dc.identifier.issn 1558-0687
dc.identifier.scopus 2-s2.0-105020054740
dc.identifier.uri https://doi.org/10.1109/MWC.2025.3601674
dc.identifier.uri https://hdl.handle.net/20.500.12469/7586
dc.language.iso en en_US
dc.publisher IEEE-Inst Electrical Electronics Engineers Inc en_US
dc.relation.ispartof IEEE Wireless Communications en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Optimization en_US
dc.subject Manifolds en_US
dc.subject Array Signal Processing en_US
dc.subject Wireless Networks en_US
dc.subject Vectors en_US
dc.subject Computational Complexity en_US
dc.subject Reconfigurable Intelligent Surfaces en_US
dc.subject Convergence en_US
dc.subject Resource Management en_US
dc.subject Faces en_US
dc.title Riemannian Manifold Approach for RIS/IOS-Assisted Wireless Networks Design en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 57222166674
gdc.author.scopusid 57450711600
gdc.author.scopusid 60158688800
gdc.author.scopusid 7005179513
gdc.author.scopusid 55336250100
gdc.author.wosid Panayirci, Erdal/Acl-1483-2022
gdc.description.department Kadir Has University en_US
gdc.description.departmenttemp [Li, Bin; Guo, Ning; Hu, Yulin] Wuhan Univ, Sch Elect Informat, Wuhan 430072, Peoples R China; [Li, Bin; Guo, Ning; Hu, Yulin] 6G Intelligent Connect Int Sci & Technol Cooperat, Wuhan 430072, Peoples R China; [Panayirci, Erdal] Kadir Has Univ, Dept Elect & Elect Engn, TR-34230 Istanbul, Turkiye; [Panayirci, Erdal] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA; [Dong, Zhicheng] Tibet Univ, Sch Elect Engn, Lhasa 850000, Peoples R China en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.wos WOS:001600807800001

Files