Weak Generalized and Numerical Solution for a Quasilinear Pseudo-Parabolic Equation With Nonlocal Boundary Condition

dc.contributor.author Bağlan, İrem Sakınç
dc.contributor.author Kanca, Fatma
dc.date.accessioned 2019-06-27T08:02:46Z
dc.date.available 2019-06-27T08:02:46Z
dc.date.issued 2014
dc.department Fakülteler, İşletme Fakültesi, Yönetim Bilişim Sistemleri Bölümü en_US
dc.description.abstract This paper investigates the one dimensional mixed problem with nonlocal boundary conditions for the quasilinear parabolic equation. Under some natural regularity and consistency conditions on the input data the existence uniqueness convergence of the weak generalized solution and also continuous dependence upon the data of the solution are shown by using the generalized Fourier method. We construct an iteration algorithm for the numerical solution of this problem. en_US]
dc.identifier.citationcount 1
dc.identifier.doi 10.1186/1687-1847-2014-277 en_US
dc.identifier.issn 1687-1847 en_US
dc.identifier.issn 1687-1847
dc.identifier.scopus 2-s2.0-84938410381 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/682
dc.identifier.uri https://doi.org/10.1186/1687-1847-2014-277
dc.identifier.wos WOS:000349785400001 en_US
dc.institutionauthor Kanca, Fatma en_US
dc.language.iso en en_US
dc.publisher Springer International Publishing en_US
dc.relation.journal Advances in Difference Equations en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 1
dc.title Weak Generalized and Numerical Solution for a Quasilinear Pseudo-Parabolic Equation With Nonlocal Boundary Condition en_US
dc.type Article en_US
dc.wos.citedbyCount 1
dspace.entity.type Publication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Weak generalized and numerical solution for a quasilinear pseudo-parabolic equation with nonlocal boundary condition.pdf
Size:
408.14 KB
Format:
Adobe Portable Document Format
Description: