'Level grading' a new graded algebra structure on differential polynomials: application to the classification of scalar evolution equations
dc.contributor.author | Bilge, Ayşe Hümeyra | |
dc.contributor.author | Bilge, Ayşe Hümeyra | |
dc.date.accessioned | 2019-06-27T08:03:24Z | |
dc.date.available | 2019-06-27T08:03:24Z | |
dc.date.issued | 2013 | |
dc.department | Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Endüstri Mühendisliği Bölümü | en_US |
dc.description.abstract | We define a new grading which we call the 'level grading' on the algebra of polynomials generated by the derivatives u(k+i) over the ring K-(k) of C-infinity functions of x t u u(1) ... u(k) where . This grading has the property that the total derivative and the integration by parts with respect to x are filtered algebra maps. In addition if u satisfies the evolution equation u(j) = F[u] where F is a polynomial of order m = k + p and of level p then the total derivative with respect to t D-t is also a filtered algebra map. Furthermore if the separant partial derivative F/partial derivative u(m) belongs to K-(k) then the canonical densities (i) are polynomials of level 2i + 1 and (i) is of level 2i + 1 + m. We define 'KdV-like' evolution equations as those equations for which all the odd canonical densities rho((i)) are non-trivial. We use the properties of level grading to obtain a preliminary classification of scalar evolution equations of orders m = 7 9 11 13 up to their dependence on x t u u(1) and u(2). These equations have the property that the canonical density rho((-1)) is (alpha u(3)(2) + beta u(3) + gamma)(1/2) where alpha beta and gamma are functions of x t u u(1) u(2). This form of rho((-1)) is shared by the essentially nonlinear class of third order equations and a new class of fifth order equations. | en_US] |
dc.identifier.citation | 1 | |
dc.identifier.doi | 10.1088/1751-8113/46/38/385202 | en_US |
dc.identifier.issn | 1751-8113 | en_US |
dc.identifier.issn | 1751-8113 | |
dc.identifier.issue | 38 | |
dc.identifier.scopus | 2-s2.0-84883852654 | en_US |
dc.identifier.scopusquality | Q1 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12469/785 | |
dc.identifier.uri | https://doi.org/10.1088/1751-8113/46/38/385202 | |
dc.identifier.volume | 46 | en_US |
dc.identifier.wos | WOS:000324073500005 | en_US |
dc.identifier.wosquality | Q2 | |
dc.institutionauthor | Bilge, Ayşe Hümeyra | en_US |
dc.language.iso | en | en_US |
dc.publisher | IOP Publishing Ltd | en_US |
dc.relation.journal | Journal Of Physics A-Mathematical And Theoretical | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.title | 'Level grading' a new graded algebra structure on differential polynomials: application to the classification of scalar evolution equations | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 1b50a6b2-7290-44da-b8d5-f048fea8b315 | |
relation.isAuthorOfPublication.latestForDiscovery | 1b50a6b2-7290-44da-b8d5-f048fea8b315 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 'Level grading' a new graded algebra structure on differential polynomials application to the classification of scalar evolution equations.pdf
- Size:
- 485.43 KB
- Format:
- Adobe Portable Document Format
- Description: