'level Grading' a New Graded Algebra Structure on Differential Polynomials: Application To the Classification of Scalar Evolution Equations

dc.contributor.author Mizrahi, Eti
dc.contributor.author Bilge, Ayşe Hümeyra
dc.contributor.author Bilge, Ayşe Hümeyra
dc.contributor.other Industrial Engineering
dc.date.accessioned 2019-06-27T08:03:24Z
dc.date.available 2019-06-27T08:03:24Z
dc.date.issued 2013
dc.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Endüstri Mühendisliği Bölümü en_US
dc.description.abstract We define a new grading which we call the 'level grading' on the algebra of polynomials generated by the derivatives u(k+i) over the ring K-(k) of C-infinity functions of x t u u(1) ... u(k) where . This grading has the property that the total derivative and the integration by parts with respect to x are filtered algebra maps. In addition if u satisfies the evolution equation u(j) = F[u] where F is a polynomial of order m = k + p and of level p then the total derivative with respect to t D-t is also a filtered algebra map. Furthermore if the separant partial derivative F/partial derivative u(m) belongs to K-(k) then the canonical densities (i) are polynomials of level 2i + 1 and (i) is of level 2i + 1 + m. We define 'KdV-like' evolution equations as those equations for which all the odd canonical densities rho((i)) are non-trivial. We use the properties of level grading to obtain a preliminary classification of scalar evolution equations of orders m = 7 9 11 13 up to their dependence on x t u u(1) and u(2). These equations have the property that the canonical density rho((-1)) is (alpha u(3)(2) + beta u(3) + gamma)(1/2) where alpha beta and gamma are functions of x t u u(1) u(2). This form of rho((-1)) is shared by the essentially nonlinear class of third order equations and a new class of fifth order equations. en_US]
dc.identifier.citationcount 1
dc.identifier.doi 10.1088/1751-8113/46/38/385202 en_US
dc.identifier.issn 1751-8113 en_US
dc.identifier.issn 1751-8113
dc.identifier.issue 38
dc.identifier.scopus 2-s2.0-84883852654 en_US
dc.identifier.scopusquality Q1
dc.identifier.uri https://hdl.handle.net/20.500.12469/785
dc.identifier.uri https://doi.org/10.1088/1751-8113/46/38/385202
dc.identifier.volume 46 en_US
dc.identifier.wos WOS:000324073500005 en_US
dc.identifier.wosquality Q2
dc.institutionauthor Bilge, Ayşe Hümeyra en_US
dc.language.iso en en_US
dc.publisher IOP Publishing Ltd en_US
dc.relation.journal Journal Of Physics A-Mathematical And Theoretical en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 1
dc.title 'level Grading' a New Graded Algebra Structure on Differential Polynomials: Application To the Classification of Scalar Evolution Equations en_US
dc.type Article en_US
dc.wos.citedbyCount 1
dspace.entity.type Publication
relation.isAuthorOfPublication 1b50a6b2-7290-44da-b8d5-f048fea8b315
relation.isAuthorOfPublication.latestForDiscovery 1b50a6b2-7290-44da-b8d5-f048fea8b315
relation.isOrgUnitOfPublication 28868d0c-e9a4-4de1-822f-c8df06d2086a
relation.isOrgUnitOfPublication.latestForDiscovery 28868d0c-e9a4-4de1-822f-c8df06d2086a

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
'Level grading' a new graded algebra structure on differential polynomials application to the classification of scalar evolution equations.pdf
Size:
485.43 KB
Format:
Adobe Portable Document Format
Description: