Weight Exchange in Distributed Learning

gdc.relation.journal 2016 International Joint Conference On Neural Networks (IJCNN) en_US
dc.contributor.author Dorner, Julian
dc.contributor.author Favrichon, Samuel
dc.contributor.author Öğrenci, Arif Selçuk
dc.date.accessioned 2019-06-27T08:01:54Z
dc.date.available 2019-06-27T08:01:54Z
dc.date.issued 2016
dc.description.abstract Neural networks may allow different organisations to extract knowledge from the data they collect about a similar problem domain. Moreover learning algorithms usually benefit from being able to use more training instances. But the parties owning the data are not always keen on sharing it. We propose a way to implement distributed learning to improve the performance of neural networks without sharing the actual data among different organisations. This paper deals with the alternative methods of determining the weight exchange mechanisms among nodes. The key is to implement the epochs of learning separately at each node and then to select the best weight set among the different neural networks and to publish them to each node. The results show that an increase in performance can be achieved by deploying simple methods for weight exchange. en_US]
dc.identifier.citationcount 0
dc.identifier.doi 10.1109/IJCNN.2016.7727591 en_US
dc.identifier.isbn 9781509006199
dc.identifier.issn 2161-4393 en_US
dc.identifier.issn 2161-4393
dc.identifier.scopus 2-s2.0-85007227791 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/502
dc.identifier.uri https://doi.org/10.1109/IJCNN.2016.7727591
dc.language.iso en en_US
dc.publisher IEEE en_US
dc.relation.ispartof 2016 International Joint Conference on Neural Networks (IJCNN)
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.title Weight Exchange in Distributed Learning en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.institutional Öğrenci, Arif Selçuk en_US
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.endpage 3084
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.startpage 3081 en_US
gdc.identifier.openalex W2553665717
gdc.identifier.wos WOS:000399925503038 en_US
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5942106E-9
gdc.oaire.isgreen true
gdc.oaire.keywords N/A
gdc.oaire.popularity 9.69847E-10
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.0
gdc.opencitations.count 0
gdc.plumx.mendeley 4
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
gdc.wos.citedcount 0
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery b20623fc-1264-4244-9847-a4729ca7508c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Weight Exchange in Distributed Learning_2.pdf
Size:
179.59 KB
Format:
Adobe Portable Document Format
Description: