Weight Exchange in Distributed Learning
dc.contributor.author | Dorner, Julian | |
dc.contributor.author | Favrichon, Samuel | |
dc.contributor.author | Öğrenci, Arif Selçuk | |
dc.date.accessioned | 2019-06-27T08:01:54Z | |
dc.date.available | 2019-06-27T08:01:54Z | |
dc.date.issued | 2016 | |
dc.department | Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü | en_US |
dc.description.abstract | Neural networks may allow different organisations to extract knowledge from the data they collect about a similar problem domain. Moreover learning algorithms usually benefit from being able to use more training instances. But the parties owning the data are not always keen on sharing it. We propose a way to implement distributed learning to improve the performance of neural networks without sharing the actual data among different organisations. This paper deals with the alternative methods of determining the weight exchange mechanisms among nodes. The key is to implement the epochs of learning separately at each node and then to select the best weight set among the different neural networks and to publish them to each node. The results show that an increase in performance can be achieved by deploying simple methods for weight exchange. | en_US] |
dc.identifier.citation | 0 | |
dc.identifier.doi | 10.1109/IJCNN.2016.7727591 | en_US |
dc.identifier.endpage | 3084 | |
dc.identifier.isbn | 9781509006199 | |
dc.identifier.issn | 2161-4393 | en_US |
dc.identifier.issn | 2161-4393 | |
dc.identifier.scopus | 2-s2.0-85007227791 | en_US |
dc.identifier.scopusquality | N/A | |
dc.identifier.startpage | 3081 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12469/502 | |
dc.identifier.uri | https://doi.org/10.1109/IJCNN.2016.7727591 | |
dc.identifier.wos | WOS:000399925503038 | en_US |
dc.identifier.wosquality | N/A | |
dc.institutionauthor | Öğrenci, Arif Selçuk | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.relation.journal | 2016 International Joint Conference On Neural Networks (IJCNN) | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.title | Weight Exchange in Distributed Learning | en_US |
dc.type | Conference Object | en_US |
dspace.entity.type | Publication |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Weight Exchange in Distributed Learning_2.pdf
- Size:
- 179.59 KB
- Format:
- Adobe Portable Document Format
- Description: