Software for Brain Network Simulations: A Comparative Study

dc.contributor.author Tikidji-Hamburyan, Ruben A.
dc.contributor.author Narayana, Vikram
dc.contributor.author Bozkus, Zeki
dc.contributor.author El-Ghazawi, Tarek A.
dc.contributor.other Computer Engineering
dc.contributor.other 05. Faculty of Engineering and Natural Sciences
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2024-10-15T19:39:34Z
dc.date.available 2024-10-15T19:39:34Z
dc.date.issued 2017
dc.description.abstract Numerical simulations of brain networks are a critical part of our efforts in understanding brain functions under pathological and normal conditions. For several decades, the community has developed many software packages and simulators to accelerate research in computational neuroscience. In this article, we select the three most popular simulators, as determined by the number of models in the ModelDB database, such as NEURON, GENESIS, and BRIAN, and perform an independent evaluation of these simulators. In addition, we study NEST, one of the lead simulators of the Human Brain Project. First, we study them based on one of the most important characteristics, the range of supported models. Our investigation reveals that brain network simulators may be biased toward supporting a specific set of models. However, all simulators tend to expand the supported range of models by providing a universal environment for the computational study of individual neurons and brain networks. Next, our investigations on the characteristics of computational architecture and efficiency indicate that all simulators compile the most computationally intensive procedures into binary code, with the aim of maximizing their computational performance. However, not all simulators provide the simplest method for module development and/or guarantee efficient binary code. Third, a study of their amenability for high-performance computing reveals that NEST can almost transparently map an existing model on a cluster or multicore computer, while NEURON requires code modification if the model developed for a single computer has to be mapped on a computational cluster. Interestingly, parallelization is the weakest characteristic of BRIAN, which provides no support for cluster computations and limited support for multicore computers. Fourth, we identify the level of user support and frequency of usage for all simulators. Finally, we carry out an evaluation using two case studies: a large network with simplified neural and synaptic models and a small network with detailed models. These two case studies allow us to avoid any bias toward a particular software package. The results indicate that BRIAN provides the most concise language for both cases considered. Furthermore, as expected, NEST mostly favors large network models, while NEURON is better suited for detailed models. Overall, the case studies reinforce our general observation that simulators have a bias in the computational performance toward specific types of the brain network models. en_US
dc.description.sponsorship Scientific and Technological Research Council of Turkey (TUBITAK) [114E046] en_US
dc.description.sponsorship Zeki Bozkus is funded by Scientific and Technological Research Council of Turkey (TUBITAK; 114E046). en_US
dc.identifier.citationcount 42
dc.identifier.doi 10.3389/fninf.2017.00046
dc.identifier.issn 1662-5196
dc.identifier.scopus 2-s2.0-85028071516
dc.identifier.uri https://doi.org/10.3389/fninf.2017.00046
dc.identifier.uri https://hdl.handle.net/20.500.12469/6330
dc.language.iso en en_US
dc.publisher Frontiers Media Sa en_US
dc.relation.ispartof Frontiers in Neuroinformatics
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject computational neuroscience en_US
dc.subject brain network simulators en_US
dc.subject spiking neural networks en_US
dc.subject comparative study en_US
dc.subject phenomenological model en_US
dc.subject conductance-based model en_US
dc.title Software for Brain Network Simulations: A Comparative Study en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Bozkuş, Zeki
gdc.author.scopusid 55173951700
gdc.author.scopusid 35311455000
gdc.author.scopusid 6601990115
gdc.author.scopusid 6701472736
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Kadir Has University en_US
gdc.description.departmenttemp [Tikidji-Hamburyan, Ruben A.; Narayana, Vikram; El-Ghazawi, Tarek A.] George Washington Univ, Sch Engn & Appl Sci, Washington, DC 20052 USA; [Bozkus, Zeki] Kadir Has Univ, Comp Engn Dept, Istanbul, Turkey en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 11 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W2737038943
gdc.identifier.pmid 28775687
gdc.identifier.wos WOS:000406561700001
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.downloads 0
gdc.oaire.impulse 11.0
gdc.oaire.influence 4.3453907E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Spiking neural networks
gdc.oaire.keywords brain network simulators
gdc.oaire.keywords Phenomenological model
gdc.oaire.keywords Conductance-based model
gdc.oaire.keywords Neurosciences. Biological psychiatry. Neuropsychiatry
gdc.oaire.keywords conductance-based model
gdc.oaire.keywords Brain network simulators
gdc.oaire.keywords phenomenological model
gdc.oaire.keywords Computational neuroscience
gdc.oaire.keywords spiking neural networks
gdc.oaire.keywords Comparative study
gdc.oaire.keywords comparative study
gdc.oaire.keywords computational neuroscience
gdc.oaire.keywords RC321-571
gdc.oaire.keywords Neuroscience
gdc.oaire.popularity 3.4401886E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0301 basic medicine
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0302 clinical medicine
gdc.oaire.views 1
gdc.openalex.fwci 1.771
gdc.openalex.normalizedpercentile 0.84
gdc.opencitations.count 48
gdc.plumx.crossrefcites 8
gdc.plumx.facebookshareslikecount 9
gdc.plumx.mendeley 150
gdc.plumx.pubmedcites 25
gdc.plumx.scopuscites 46
gdc.scopus.citedcount 46
gdc.wos.citedcount 44
relation.isAuthorOfPublication 14914cc2-2a09-46be-a429-12ef3a6f5456
relation.isAuthorOfPublication.latestForDiscovery 14914cc2-2a09-46be-a429-12ef3a6f5456
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files