A low-complexity KL expansion-based channel estimator for OFDM systems

Loading...
Thumbnail Image

Date

2005

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Abstract

This paper first proposes a computationally efficient pilot-aided linear minimum mean square error (MMSE) batch channel estimation algorithm for OFDM systems in unknown wireless fading channels. The proposed approach employs a convenient representation of the discrete multipath fading channel based on the Karhunen-Loeve (KL) orthogonal expansion and finds MMSE estimates of the uncorrelated KL series expansion coefficients. Based on such an expansion no matrix inversion is required in the proposed MMSE estimator. Moreover optimal rank reduction is achieved by exploiting the optimal truncation property of the KL expansion resulting in a smaller computational load on the estimation algorithm. The performance of the proposed approach is studied through analytical and experimental results. We then consider the stochastic Cramér-Rao bound and derive the closed-form expression for the random KL coefficients and consequently exploit the performance of the MMSE channel estimator based on the evaluation of minimum Bayesian MSE. We also analyze the effect of a modelling mismatch on the estimator performance. To further reduce the complexity we extend the batch linear MMSE to the sequential linear MMSE estimator. With the fast convergence property and the simple structure the sequential linear MMSE estimator provides an attractive alternative to the implementation of channel estimator.

Description

Keywords

Channel estimation, MMSE estimation, OFDM systems

Turkish CoHE Thesis Center URL

Fields of Science

Citation

12

WoS Q

N/A

Scopus Q

N/A

Source

Volume

2005

Issue

2

Start Page

163

End Page

174