Büyük patlama büyük çöküş optimizasyon yöntemi ile ultra geniş band sensörlerinin iç mekân konum belirleme doğruluklarının iyileştirilmesi
Loading...
Date
2018
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Pamukkale Üniversitesi
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Ultra geniş band teknolojisi, birçok iç mekân konum belirleme
sisteminde başarılı çözümler sunan, diğer yöntemlere kıyasla daha iyi
performans gösteren, gelişmekte olan bir teknolojidir. Bu çalışmada,
ultra geniş band (Ultra Wide Band-UWB) sensörler kullanılarak bir iç
mekân konum belirleme sistemi geliştirilmiş ve kullanılan ek
algoritmalarla, standart donanımların sağladığı doğruluk düzeyi
arttırılırken aynı zamanda ortalama hatayı azaltmak hedeflenmiştir.
Bu amaçla Büyük Patlama - Büyük Çöküş (Big Bang-Big Crunch veya
BB-BC) optimizasyon yöntemi deneysel iç mekân konumlandırma
sistemine uygulanmış ve ölçüm doğruluğu üzerindeki olumlu etkisi
yapılan testlerle kanıtlanmıştır. Test alanı olarak 7.35 m × 5.41 m
boyutlarında 39.76 m2
'lik bir alan seçilmiş ve özel olarak tasarlanmış
bir tavan sistemine yerden 2.85 m yüksekliğe üç farklı UWB alıcı
yerleştirilmiş ve 182 adet test noktasından 60 sn.süreyle toplam 10.920
ölçüm alınmıştır. Ölçüm sonuçları Büyük Patlama - Büyük Çöküş
optimizasyon algoritması ile düzeltilerek, ortalama hatası önceki
20.72 cm değerinden 15.02 cm’ye düşürülmüş, böylelikle ölçüm
sonuçlarının doğruluğu arttırılmıştır.
Ultra-wide Band technology is an emerging technology that offers successful solutions in many indoor positioning systems and performs better than other methods. In this study, an indoor positioning system using Ultra-wide Band (UWB) sensors was developed and it was aimed to increase the accuracy level of the standard equipment with the additional algorithms used while reducing the average error. For this purpose, the Big Bang-Big Crunch (BB-BC) optimization method has been applied to the experimental indoor positioning system and the positive effect on the measurement accuracy has been proved by the tests made. An area of 39.76 m2 was selected as a test area of 7.35 m × 5.41 m and three different Ultra-wide Band receivers were installed at a height of 2.85 m on a specially designed ceiling system and a total of 10.920 measurements were taken from 182 test points for 60 seconds. By correcting the measurement results with the Big Bang - Big Crunch optimization algorithm, the average error was reduced from the previous 20.72 cm to 15.02 cm, thus the accuracy of the measurement results were improved.
Ultra-wide Band technology is an emerging technology that offers successful solutions in many indoor positioning systems and performs better than other methods. In this study, an indoor positioning system using Ultra-wide Band (UWB) sensors was developed and it was aimed to increase the accuracy level of the standard equipment with the additional algorithms used while reducing the average error. For this purpose, the Big Bang-Big Crunch (BB-BC) optimization method has been applied to the experimental indoor positioning system and the positive effect on the measurement accuracy has been proved by the tests made. An area of 39.76 m2 was selected as a test area of 7.35 m × 5.41 m and three different Ultra-wide Band receivers were installed at a height of 2.85 m on a specially designed ceiling system and a total of 10.920 measurements were taken from 182 test points for 60 seconds. By correcting the measurement results with the Big Bang - Big Crunch optimization algorithm, the average error was reduced from the previous 20.72 cm to 15.02 cm, thus the accuracy of the measurement results were improved.
Description
Keywords
İç mekân konum belirleme, Uçuş zamanı, Ultra geniş band sensörler, Büyük patlama büyük çöküş optimizasyon yöntemi, Davranış haritalama, Indoor positioning, Time of flight, Ultra-wide band sensors, Big bang-big crunch optimization method, Behavior mapping
Turkish CoHE Thesis Center URL
Fields of Science
Citation
0
WoS Q
N/A
Scopus Q
N/A
Source
Volume
24
Issue
5
Start Page
921
End Page
928