Computing Finite Time Non-Ruin Probability and Some Joint Distributions in Discrete Time Risk Model With Exchangeable Claim Occurrences

gdc.relation.journal Journal of Computational and Applied Mathematics en_US
dc.contributor.author Eryilmaz, Serkan
dc.contributor.author Gebizlioğlu, Ömer Lütfi
dc.contributor.other International Trade and Finance
dc.contributor.other 03. Faculty of Economics, Administrative and Social Sciences
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2019-06-27T08:01:23Z
dc.date.available 2019-06-27T08:01:23Z
dc.date.issued 2017
dc.description.abstract In this paper we study a discrete time risk model based on exchangeable dependent claim occurrences. In particular we obtain expressions for the finite time non-ruin probability and the joint distribution of the time to ruin the surplus immediately before ruin and the deficit at ruin. An illustration of the results is given and some implications of the results are provided. Comparisons are made with the corresponding results for the classical compound binomial model of independent and identically distributed claim occurrences. (C) 2016 Elsevier E.V. All rights reserved. en_US]
dc.identifier.citationcount 4
dc.identifier.doi 10.1016/j.cam.2016.09.025 en_US
dc.identifier.issn 0377-0427 en_US
dc.identifier.issn 1879-1778 en_US
dc.identifier.issn 0377-0427
dc.identifier.issn 1879-1778
dc.identifier.scopus 2-s2.0-84991607081 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/362
dc.identifier.uri https://doi.org/10.1016/j.cam.2016.09.025
dc.language.iso en en_US
dc.publisher Elsevier Science en_US
dc.relation.ispartof Journal of Computational and Applied Mathematics
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Compound binomial model en_US
dc.subject Dependence en_US
dc.subject Exchangeability en_US
dc.subject Ruin theory en_US
dc.title Computing Finite Time Non-Ruin Probability and Some Joint Distributions in Discrete Time Risk Model With Exchangeable Claim Occurrences en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Gebizlioğlu, Ömer Lütfi en_US
gdc.author.institutional Gebizlioğlu, Ömer Lütfi
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, İşletme Fakültesi, Uluslararası Ticaret ve Finans Bölümü en_US
gdc.description.endpage 242
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 235 en_US
gdc.description.volume 313 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W2526278148
gdc.identifier.wos WOS:000390501600016 en_US
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.impulse 6.0
gdc.oaire.influence 3.2409022E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Exchangeability
gdc.oaire.keywords Ruin theory
gdc.oaire.keywords Compound binomial model
gdc.oaire.keywords Dependence
gdc.oaire.popularity 5.2478977E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.fwci 1.372
gdc.openalex.normalizedpercentile 0.86
gdc.opencitations.count 10
gdc.plumx.crossrefcites 9
gdc.plumx.mendeley 7
gdc.plumx.scopuscites 6
gdc.scopus.citedcount 6
gdc.wos.citedcount 5
relation.isAuthorOfPublication 5a5c8816-1812-437a-81bb-7e07bf97810e
relation.isAuthorOfPublication.latestForDiscovery 5a5c8816-1812-437a-81bb-7e07bf97810e
relation.isOrgUnitOfPublication 16202dfd-a149-4884-98fb-ada5f8c12918
relation.isOrgUnitOfPublication acb86067-a99a-4664-b6e9-16ad10183800
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery 16202dfd-a149-4884-98fb-ada5f8c12918

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Computing finite time non-ruin probability and some joint distributions in discrete time risk model with exchangeable claim occurrences.pdf
Size:
493.31 KB
Format:
Adobe Portable Document Format
Description: