Correlation of Experimental Liquid-Liquid Equilibrium Data for Ternary Systems Using Nrtl and Gmdh-Type Neural Network

gdc.relation.journal Journal of Chemical & Engineering Data en_US
dc.contributor.author Bekri, Sezin
dc.contributor.author Özmen, Dilek
dc.contributor.author Özmen, Atilla
dc.contributor.other Electrical-Electronics Engineering
dc.contributor.other 05. Faculty of Engineering and Natural Sciences
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2019-06-27T08:01:19Z
dc.date.available 2019-06-27T08:01:19Z
dc.date.issued 2017
dc.description.abstract In this work liquid liquid equilibrium (LLE) data for the ternary systems (water + propionic acid + solvent) were experimentally obtained at atmospheric pressure and 298.2 K. The ternary systems show type-1 behavior of LLE. Cyclopentane cyclopentanol 2-octanone and dibutyl maleate were chosen as solvent and it has been noted that there are no data in the literature on these ternary systems. The consistency of the experimental tie-line data was checked using the Hand and Othrner-Tobias correlation equations. A comparison of the extracting capabilities of the solvent was made with respect to the distribution coefficients and separation factors. The correlation of the experimental tie-line data was confirmed by the NRTL thermodynamic model. A Group Method of Data Handling (GMDH)-type neural network (NN) was also used to correlate the experimental tie-lines. It is shown that the results of the both models cohere with the experimental values. en_US]
dc.identifier.citationcount 13
dc.identifier.doi 10.1021/acs.jced.6b00985 en_US
dc.identifier.issn 0021-9568 en_US
dc.identifier.issn 0021-9568
dc.identifier.issn 1520-5134
dc.identifier.scopus 2-s2.0-85021409551 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/342
dc.identifier.uri https://doi.org/10.1021/acs.jced.6b00985
dc.language.iso en en_US
dc.publisher Amer Chemical Soc en_US
dc.relation.ispartof Journal of Chemical & Engineering Data
dc.rights info:eu-repo/semantics/openAccess en_US
dc.title Correlation of Experimental Liquid-Liquid Equilibrium Data for Ternary Systems Using Nrtl and Gmdh-Type Neural Network en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Özmen, Atilla en_US
gdc.author.institutional Özmen, Atilla
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.endpage 1805
gdc.description.issue 6
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 1797 en_US
gdc.description.volume 62 en_US
gdc.identifier.openalex W2616900894
gdc.identifier.wos WOS:000403192100008 en_US
gdc.oaire.diamondjournal false
gdc.oaire.impulse 6.0
gdc.oaire.influence 3.0441099E-9
gdc.oaire.isgreen true
gdc.oaire.keywords N/A
gdc.oaire.popularity 6.974463E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 0204 chemical engineering
gdc.openalex.fwci 0.796
gdc.openalex.normalizedpercentile 0.65
gdc.opencitations.count 13
gdc.plumx.crossrefcites 10
gdc.plumx.mendeley 15
gdc.plumx.scopuscites 17
gdc.scopus.citedcount 17
gdc.wos.citedcount 16
relation.isAuthorOfPublication cf8f9e05-3f89-4ab6-af78-d0937210fb77
relation.isAuthorOfPublication.latestForDiscovery cf8f9e05-3f89-4ab6-af78-d0937210fb77
relation.isOrgUnitOfPublication 12b0068e-33e6-48db-b92a-a213070c3a8d
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery 12b0068e-33e6-48db-b92a-a213070c3a8d

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Correlation of Experimental Liquid–Liquid Equilibrium Data for Ternary Systems Using NRTL and GMDH-Type Neural Network.pdf
Size:
1.27 MB
Format:
Adobe Portable Document Format
Description: