Browsing by Author "Lima, Henrique Santos"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation - WoS: 4Citation - Scopus: 4First-Principle Validation of Fourier's Law in D=1, 2, 3 Classical Systems(Elsevier, 2023) Tsallis, Constantino; Lima, Henrique Santos; Tirnakli, Ugur; Eroglu, DenizWe numerically study the thermal transport in the classical inertial nearest-neighbor XY ferromagnet in d = 1, 2, 3, the total number of sites being given by N = Ld, where L is the linear size of the system. For the thermal conductance sigma, we obtain sigma(T, L)L delta(d)= A(d) e-B(d) [L gamma (d)T ]eta(d) (with ez q(d) q equivalent to [1+(1-q)z]1/(1-q); ez1 = ez; A(d) > 0; B(d) > 0; q(d) > 1; eta(d) > 2; delta >= 0; gamma(d) > 0), for all values of L gamma(d)T for d = 1, 2, 3. In the L -> infinity limit, we have sigma proportional to 1/L rho sigma(d) with rho sigma(d) = delta(d)+gamma(d)eta(d)/[q(d)-1]. The material conductivity is given by kappa = sigma Ld proportional to 1/L rho kappa(d) (L -> infinity) with rho kappa(d) = rho sigma(d) - d. Our numerical results are consistent with 'conspiratory' d-dependences of (q, eta, delta, gamma), which comply with normal thermal conductivity (Fourier law) for all dimensions.(c) 2023 Published by Elsevier B.V.Article Fourier's Law Breakdown for the Planar-Rotor Chain with Long-Range Interactions(Elsevier, 2026) Lima, Henrique Santos; Tsallis, Constantino; Eroglu, Deniz; Tirnakli, UgurFourier's law, which linearly relates heat flux to the negative gradient of temperature, is a fundamental principle in thermal physics and widely applied across materials science and engineering. However, its validity in low-dimensional systems with long-range interactions remains only partially understood. We investigate here the thermal transport along a onedimensional chain of classical planar rotators with algebraically decaying interactions 1/ with distance ( >= 0), known as the inertial a-XY model. Using nonequilibrium simulations with thermal reservoirs at the boundaries, we numerically study the thermal conductance as a function of system sizea, temperature , and . We find that the results obey a universal scaling law characterized by a stretched-exponential function with -dependent parameters. Notably, a threshold at approximate to 2 separates two regimes: for >= , Fourier's law holds with size-independent conductivity = , while for < , anomalous transport is observed, corroborating (with higher precision) the results reported in Phys.Rev.E94,042117(2016). These findings provide a quantitative framework for understanding the breakdown of Fourier's law in systems with long-range interactions. The simulation is carried out by assuming the equations of motion, which include Langevin heat baths applied to the first and last particles, and are integrated using the Velocity Verlet algorithm. The conductance is calculated from the connection between Lagrangian heat flux and heat equation for typical values of (, , ). For large , the results can be collapsed into an universal -stretched exponential form, namely proportional to -() , where = [1 + (1-)]1/(1-). The parameters (, , ,) are -dependent, and is the index of the -stretched exponential. This form is achievable due to the ratio /( - 1) being almost constant with respect to the lattice size. These findings provide significant insights into heat conduction mechanisms in systems with long-range interactions.

