Browsing by Author "Noorallahzadeh, Mojtaba"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Article Citation - WoS: 29Citation - Scopus: 35A New Design of Parity Preserving Reversible Vedic Multiplier Targeting Emerging Quantum Circuits(Wiley, 2023) Noorallahzadeh, Mojtaba; Mosleh, Mohammad; Ahmadpour, Seyed-Sajad; Pal, Jayanta; Sen, BibhashReversible logic is used increasingly to design digital circuits with lower power consumption. The parity preserving (PP) property contributes to detect permanent and transient faults in reversible circuits by comparing the input and output parity. Multiplication is also considered one of the primary operations in both digital and analog circuits due to its wide applications in digital signal processing and computer arithmetic operations. Accordingly, Vedic mathematics, as a set of techniques sutras, has become popular and is extensively used to solve mathematical problems more efficiently and faster. This work proposes three PP reversible blocks, N-1, N-2, and N-3, which are used to develop a novel effective 2-bit PP reversible Vedic multiplier and 4-bit ripples carry adders (RCAs). Moreover, 2-bit Vedic multiplier and RCA are used to develop the 4-bit PP reversible Vedic multiplier. The proposed designs outperform the most relevant state-of-the-art structures in terms of garbage output (GO), constant input (CI), gate count (GC), and quantum cost (QC). Average savings of 22.37%, 35.44%, 35.44%, and 34.76%, and 17.76%, 26.60%, 24.52%, and 27.27% respectively, are observed for two-bit and four-bit PP reversible Vedic multipliers in terms of QC, GO, CI and GC as compared to previous works.Article Citation - WoS: 3Citation - Scopus: 4A New Fault-Tolerance Majority Voter Circuit for Quantum-Based Nano-Scale Digital Systems(Springer, 2025) Ahmadpour, Seyed-Sajad; Navimipour, Nima Jafari; Mosleh, Mohammad; Noorallahzadeh, Mojtaba; Kassa, Sankit; Ahmed, SuhaibQuantum-dot cellular automata (QCA) technology has gained attention lately due to its ability to reduce energy dissipation and minimize circuit area. However, the existing research shows that a critical challenge arises from the lack of circuit resistance in QCA systems when confronted with defects. This issue directly impacts circuit stability and output generation. Moreover, the 3-input majority gate (MV3) is a foundational component within QCA circuits, making its improvement crucial for developing fault-tolerant circuits. One approach is to design MV3 that incorporates essential quantum cells within a single clock cycle. Thus, this paper presents a unique cellular structure for the MV3 gate, utilizing simple quantum cells. The proposed gate, comprising only twelve cells, serves as a building block for QCA circuits. It boasts several key features, including low power consumption, efficient output polarity (+/- 9.93e00-1), and high reliability. Furthermore, to show the efficiency of the suggested gate, it is employed in realizing a 2:1 multiplexer and a full adder/subtractor. Lastly, the proposed MV3 gate is utilized to develop a simultaneous multi-logic gate which is producing several vital digital circuits, such as AND, OR, NOT, NAND, Copy, Subtractor, and Adder. The circuits are designed using QCADesigner and QCAPro, with power estimation included in the process. The comparative analysis reveals that the proposed structures significantly enhance the trade-off between complexity, fault tolerance, and power consumption compared to previous designs.Article Citation - WoS: 42Citation - Scopus: 47A New Energy-Efficient Design for Quantum-Based Multiplier for Nano-Scale Devices in Internet of Things(Pergamon-elsevier Science Ltd, 2024) Ahmadpour, Seyed-Sajad; Noorallahzadeh, Mojtaba; Al-Khafaji, Hamza Mohammed Ridha; Darbandi, Mehdi; Navimipour, Nima Jafari; Javadi, Bahman; Yalcin, SenayAn enormous variety of items and things are connected via wired or wireless connections and specific addressing schemes, which is known as the Internet of Things (IoT). However, IoT devices that adopt aggressive duty-cycling for high power efficiency and prolonged lifespan necessitate the incorporation of ultra-low power consumption always-on blocks. The multiplier plays a crucial role in enhancing the capabilities of low-power IoT devices, particularly those operating with energy-efficient batteries that offer extended battery life. The previous multipliers have a struggling speed, enormous occupied area, and high energy consumption; therefore, all prior flaws must be fixed by implementing it in a suitable technology, like the quantum computing. Therefore, this paper examines the ultra-low power circuit for nano-scale IoT platforms. It also suggests novel quantum-based adders for multiplier structure. The proposed designs are simulated using the QCADesignerE 2.2 tool by focusing on energy-efficient and occupied areas for miniaturizing IoT systems.

