Browsing by Author "Noorallahzadeh, Mojtaba"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation Count: 10A new design of parity preserving reversible Vedic multiplier targeting emerging quantum circuits(Wiley, 2023) Noorallahzadeh, Mojtaba; Mosleh, Mohammad; Ahmadpour, Seyed-Sajad; Pal, Jayanta; Sen, BibhashReversible logic is used increasingly to design digital circuits with lower power consumption. The parity preserving (PP) property contributes to detect permanent and transient faults in reversible circuits by comparing the input and output parity. Multiplication is also considered one of the primary operations in both digital and analog circuits due to its wide applications in digital signal processing and computer arithmetic operations. Accordingly, Vedic mathematics, as a set of techniques sutras, has become popular and is extensively used to solve mathematical problems more efficiently and faster. This work proposes three PP reversible blocks, N-1, N-2, and N-3, which are used to develop a novel effective 2-bit PP reversible Vedic multiplier and 4-bit ripples carry adders (RCAs). Moreover, 2-bit Vedic multiplier and RCA are used to develop the 4-bit PP reversible Vedic multiplier. The proposed designs outperform the most relevant state-of-the-art structures in terms of garbage output (GO), constant input (CI), gate count (GC), and quantum cost (QC). Average savings of 22.37%, 35.44%, 35.44%, and 34.76%, and 17.76%, 26.60%, 24.52%, and 27.27% respectively, are observed for two-bit and four-bit PP reversible Vedic multipliers in terms of QC, GO, CI and GC as compared to previous works.Article Citation Count: 0A new energy-efficient design for quantum-based multiplier for nano-scale devices in internet of things(Pergamon-elsevier Science Ltd, 2024) Ahmadpour, Seyed-Sajad; Noorallahzadeh, Mojtaba; Al-Khafaji, Hamza Mohammed Ridha; Darbandi, Mehdi; Navimipour, Nima Jafari; Javadi, Bahman; Yalcin, SenayAn enormous variety of items and things are connected via wired or wireless connections and specific addressing schemes, which is known as the Internet of Things (IoT). However, IoT devices that adopt aggressive duty-cycling for high power efficiency and prolonged lifespan necessitate the incorporation of ultra-low power consumption always-on blocks. The multiplier plays a crucial role in enhancing the capabilities of low-power IoT devices, particularly those operating with energy-efficient batteries that offer extended battery life. The previous multipliers have a struggling speed, enormous occupied area, and high energy consumption; therefore, all prior flaws must be fixed by implementing it in a suitable technology, like the quantum computing. Therefore, this paper examines the ultra-low power circuit for nano-scale IoT platforms. It also suggests novel quantum-based adders for multiplier structure. The proposed designs are simulated using the QCADesignerE 2.2 tool by focusing on energy-efficient and occupied areas for miniaturizing IoT systems.