Hekimoğlu, Mustafa
Loading...
Name Variants
Hekimoğlu, Mustafa
M.,Hekimoğlu
M. Hekimoğlu
Mustafa, Hekimoğlu
Hekimoglu, Mustafa
M.,Hekimoglu
M. Hekimoglu
Mustafa, Hekimoglu
Hekimoglu,M.
Hekimoglu, M.
Hekimoğlu, M.
M.,Hekimoğlu
M. Hekimoğlu
Mustafa, Hekimoğlu
Hekimoglu, Mustafa
M.,Hekimoglu
M. Hekimoglu
Mustafa, Hekimoglu
Hekimoglu,M.
Hekimoglu, M.
Hekimoğlu, M.
Job Title
Doç. Dr.
Email Address
Mustafa.hekımoglu@khas.edu.tr
ORCID ID
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID
Scholarly Output
30
Articles
21
Citation Count
0
Supervised Theses
3
29 results
Scholarly Output Search Results
Now showing 1 - 10 of 29
Article Citation Count: 9The impact of the COVID-19 pandemic and behavioral restrictions on electricity consumption and the daily demand curve in Turkey(Elsevier Sci Ltd, 2022) Yukseltan, E.; Kok, A.; Yucekaya, A.; Bilge, A.; Aktunc, E. Agca; Hekimoglu, M.The rapid spread of COVID-19 has severely impacted many sectors, including the electricity sector. The reliability of the electricity sector is critical to the economy, health, and welfare of society; therefore, supply and demand need to be balanced in real-time, and the impact of unexpected factors should be analyzed. During the pandemic, behavioral restrictions such as lockdowns, closure of factories, schools, and shopping malls, and changing habits, such as shifted work and leisure hours at home, significantly affected the demand structure. In this research, the restrictions and their corresponding timing are classified and mapped with the Turkish electricity demand data to analyze the estimated impact of the restrictions on total demand and daily demand profile. A modulated Fourier Series Expansion evaluates deviations from normal conditions in the aggregate demand and the daily consumption profile. The aggregate demand shows a significant decrease in the early phase of the pandemic, during the period March-June 2020. The shape of the daily demand curve is analyzed to estimate how much demand shifted from daytime to night-time. A population-based restriction index is proposed to analyze the relationship between the strength and coverage of the restrictions and the total demand. The persistency of the changes in the daily demand curve in the post-contingency period is analyzed. These findings imply that new scheduling approaches for daily and weekly loads are required to avoid supply-demand mismatches in the future. The longterm policy implications for the energy transition and lessons learned from the COVID-19 pandemic experience are also presented.Master Thesis Demand Classification for Spare Parts Supply Chains in the Presence of Three Dimensional Printers(Kadir Has Üniversitesi, 2022) İşler, Zülal; Hekimoğlu, MustafaThree-dimensional printers (3DPs) are currently the source of the supply chain and are used to ensure spare parts supply in case of shortages. However, the reliability of the part produced in 3DP is lower than the original part supplied by the original equipment manufacturer (OEM). Failure of parts creates demand and the failure probability of original and printed part is different than each other. Thus, knowing the total demand distribution have great importance in optimizing the order quantity given to the OEM in the presence of 3DPs. In this study, the demand distribution of system failures has been determined by using the distribution classification methods put forward by Ord (1967) and Adan et al. (1995). In line with the results, according to study of Ord(1967), demand distribution is found as Hypergeometric and Binomial distribution. Discrete distribution family of Adan et al. (1995) gives Binomial distribution for the system demand. All results are tested with chi-square test and likelihood ratio test.Master Thesis Optimum Spare Parts Inventory Control in Existence of a Non-Stationary Installed Base(Kadir Has Üniversitesi, 2021) Kök, Ali; Hekimoğlu, MustafaIn spare parts supply chains, demand is profoundly dependent on the life cycle of the product. Thus, MROs should incorporate installed base information in demand forecasting to prevent production/service interruptions and high holding costs. MROs also try to exploit secondary markets as a cheap and expedited source of spare parts apart from the OEM. However, the secondary markets are not reliable since they have a limited and stochastic spare parts capacity. Therefore, MROs need to determine when and how much to order from two supply sources. Under the assumption of stationary demand, a mathematical model is developed for an inventory control model in a dual sourcing setup. Then, this model is extended by assuming a non-stationary demand by employing Hekimoğlu and Karlı (2021)'s demand model. Optimal ordering policies are derived when the lead time difference of suppliers is one period, under both stationarity assumptions. Heuristics policies are utilized when the lead time difference is more than one period. It is found that the Dual Index policy outperforms other considered heuristics, resulting in a satisfactory cost deviation from the optimum cost. The value of higher moment information in demand forecasting is measured by simulation studies. Information of the first two and three moments are found to be superior over the other for declining and growing installed bases, respectively. The same simulation study is conducted by presenting an estimation error to the first moment. Results showed that the information of higher moments could save costs up to 14.2% and 9.26% for growth and decline phases, respectively. Finally, empirical analyses are conducted on a company from the Turkish automotive sector by performing statistical tests. It is concluded that Hekimoğlu and Karlı (2021)'s demand model could be practical to model spare parts demand of automobiles in the growth phase.Conference Object Citation Count: 1The Implementation of Smart Contract via Blockchain Technology in Supply Chain Management: A Case Study from The Automotive Industry in Turkey(IEEE, 2021) Yuksel, Hasan Basri; Bolat, Serdar; Bozkurt, Hayreddin; Yucekaya, Ahmet; Hekimoglu, MustafaBlockchain Technology, underlined as the most revolutionizing innovation after the internet, is still in the growth phase and waits for the practitioners to enlighten its productivity promises. In the current environment, volatile profits require a more digitalized work experience and competitive advantages to get ahead in such a highly competitive automotive industry and innovative applications that lead to more simplified operation management. Accordingly, this paper aims to present a case study via use cases in which Blockchain has been used and smart contract as the sought-out innovation and its application for the digitized spare parts disposal legal process. Blockchain Technology in the automotive sector is discussed by focusing on the supply management process of an automotive company's processes in Turkey. Blockchain technology is expected to develop and simplify spare parts-related transactions in the automotive industry, which deals with more than 500K stock keeping units per company. Paper presents the current, future, and ideal states of spare parts transactions with Blockchain adoption. The implemented application enables the development of an enterprise-level blockchain platform with hyper-ledger fabric as an open-source. The distributed ledger technology provides a smart contract system between actors of the existed supply chain process. The study aims to show the potential of Blockchain Technology in delivering a high degree of competitive advantage especially for automotive service providers with regards to its features related to providing security, transparency, traceability, cost reduction, more efficient data storage in dense supply based industries.Conference Object Citation Count: 2Optimum utilization of on-demand manufacturing and laser polishing in existence of supply disruption risk(Elsevier, 2022) Ulutan, Durul; Isler, Zulal; Kaya, Burak Erkan; Hekimoglu, Mustafa3D printing has moved from being a rapid prototyping tool to an additive manufacturing method within the last decade. Additive manufacturing can satisfy the need in dire situations where spare parts distribution is an issue but access to a 3D printer is much more likely and rapid than access to original parts. Managing inventories of spare parts can be tackled with more ease thanks to the reduced part types with additive manufacturing. While quality (in terms of reliability) of additively manufactured spare parts in terms of mechanical properties seem to be lower than original parts (particularly due to the inherent staircase appearance and the corresponding stress concentration zones that can lead to premature fatigue failure), use of post-processing subtractive techniques to correct such surface irregularities are found to improve reliability. While each process adds another layer of complexity to the cost minimization problem, demand uncertainty and risk of supply disruption represent the modern global problems faced recently. The problem tackled in this study is the joint optimization of the supply reliability considering the effect of laser polishing parameters and the demand uncertainty. In this problem, a condition of random breakdowns of identical products is considered. Also, the original supplier of machine components is subject to exogenous disruptions, such as strikes, raw material scarcity, or the COVID-19 pandemic. As a result, the optimum control policy with the right cost parameters was shown via numerical experiments originated from mathematical analyses. This optimality can be critical in managing the system in the best possible way, particularly during times of unforeseen circumstances such as pandemics. (C) 2022 Society of Manufacturing Engineers (SME). Published by Elsevier Ltd. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) Peer-review under responsibility of the Scientific Committee of the NAMRI/SME.Article Citation Count: 0Markdown Optimization with Generalized Weighted Least Squares Estimation(Springernature, 2022) Hekimoglu, MustafaRetailers increasingly apply price markdowns for their seasonal products. Efficiency of these markdown applications is driven by the accuracy of empirical models, especially toward the end of a selling season. In the literature, recent sales are recognized to be more important than older sales data for estimating the current period's demand for a given markdown level. The importance difference between the weeks of a selling season is addressed by weighted least squares (WLS) method with continuous weight functions of time. This study suggests a generalization of the weight functions and a method for optimizing their shape and discretization parameters to stimulate the predictive accuracy of models. We find that addressing the importance difference of recent sales observations using our generalized weight functions improves the forecast accuracy by up to 20%, and most of the improvement stems from our weight discretization method.Article Citation Count: 1Admission control for a capacitated supply system with real-time replenishment information(Elsevier, 2023) Ma, Weina; Hekimoglu, Mustafa; Dekker, RommertControl towers can provide real-time information on logistic processes to support decision making. The question however, is how to make use of it and how much it may save. We consider this issue for a company supplying expensive spare parts and which has limited production capacity. Besides deciding on base stock levels, it can accept or reject customers. The real-time status information is captured by a k-Erlang distributed replenishment lead time. First we model the problem with patient customers as an infinite-horizon Markov decision process and minimize the total expected discounted cost. We prove that the optimal policy can be characterized using two thresholds: a base work storage level that determines when ordering takes place and an acceptance work storage level that determines when demand of customers should be accepted. In a numerical study, we show that using real-time status information on the replenishment item and adopting admission control can lead to significant cost savings. The cost savings are highest when the optimal admission threshold is a work storage level with a replenishment item halfway in process. This finding is different from the literature, where it is stated that the cost increase of ignoring real-time information is negligible under either the lost sales or the backordering case. Next we study the problem where customers are of limited patience. We find that the optimal admission policy is not always of threshold type. This is different from the literature which assumes an exponential production lead time.Master Thesis Real Time Prediction of Delivery Delay With Machine Learning(Kadir Has Üniversitesi, 2023) Küp, Büşra Ülkü; Hekimoğlu, Mustafaİnternetin yaygınlaşması, e-ticaret ve lojistik endüstrilerinde önemli bir dönüşüme yol açmıştır. Bu dönüşüm, çevrimiçi alışverişte önemli bir artışa öncülük etmiş ve rekabetçi ortamda kargo şirketlerinin operasyonel verimliliğini arttırma ihtiyacını ortaya çıkarmıştır. Teslimat süreçlerini optimize etmek ve müşteri memnuniyetini artırmak amacıyla, makine öğrenimi kullanılarak teslimat gecikmelerinin tahmin edilmesi, lojistik şirketlerine önemli katkılar sağlayacaktır. Ayrıca, gerçek dünya verilerinin bu çalışmada kullanılması, elde edilen sonuçların güvenilirliğini artırmakta ve makine öğreniminin lojistik endüstrisi odaklı akademik araştırmalarda kullanılmasının avantajlarını vurgulamaktadır. Bu çalışmada, Logistic Regression, XGBoost, CatBoost ve Random Forest gibi en yaygın kullanılan dört denetimli sınıflandırma algoritması, bir e-ticaret lojistik şirketinde gerçek zamanlı veriler kullanılarak teslimat gecikmelerinin tahmin edilmesi amacıyla uygulanmıştır. Tüm süreç boyunca sürekli gecikme tahmini yapabilmek için, tüm teslimat süreci farklı gönderi türleri için sırasıyla 11 ve 15 adım şeklinde ayrıştırılmış ve her adım için ayrı tahmin modelleri oluşturulmuştur. Bu modellerin performansını artırmak için optimal parametre ve öznitelik seçimi yöntemleri kullanılmıştır. Kullanılan bu optimizasyon teknikleri, modellerin performansları üzerinde önemli bir olumlu etki sağlamıştır. Elde edilen sonuçlara göre, dört farklı sınıflandırıcı kullanılarak oluşturulan modellerin nihai ROC-AUC skoru ile değerlendirildi. XGBoost için ROC-AUC puanları \%71,5 ile \%99,9 arasında değişmekteyken, CatBoost için ROC-AUC puanları \%72,4 ile \%99,9 arasında değişim gösterdi. Bu iki sınıflandırıcı farklı adımlarda çok yakın performans göstermiş olsalar da, CatBoost genel olarak XGBoost'a kıyasla biraz daha iyi bir sonuç ortaya koymuştur. Gelecekteki çalışmalarda, daha doğru sonuçlar elde edebilmek için derin öğrenme bazlı sınıflandırma methodlarının denenmesi ve ek özniteliklerin entegre edilmesi üzerine çalışmalar yapılacaktır. Daha büyük veri kümeleri kullanılması önerilen gecikme tahmini yaklaşımının, daha etkin çıktılar ve performans iyileştirmeleri sağlayacaktır. Ancak, daha büyük veri kümeleri elde edilmesi, işlenmesi ve derin öğrenme modellerinin denenmesi için daha yüksek performanslı donanımsal, işlemci ve hafıza, kaynaklara ihtiyaç duyulacaktır. Bu zorlukların üstesinden gelmek ve daha yüksek performanslı çözümler sunmak için çeşitli stratejiler ve teknikler geliştirilmeye devam edilecektir.Article Citation Count: 0On spare parts demand and the installed base concept: A theoretical approach(Elsevier, 2023) Amniattalab, Ayda; Frenk, J. B. G.; Hekimoglu, MustafaOriginal Equipment Manufacturers (OEMs) aim to design their service supply chain before the introduction of their products to maximize their aftersales business revenues, reduce waste and achieve sustainability. In this study, we develop a stochastic model that unifies the installed base, i.e., the number of products in use, spare parts demand, and the number of discarded products within a single modeling framework based on three product characteristics: sales rate, usage time, and failure rate. Our model describes the installed base and spare part demand evolution over the entire life cycle of a parent product using stochastic point processes. At the same time we propose under very general assumptions on the cdf of the usage time and the mean arrival functions of the sales and failure processes an easy bisection procedure to compute the time at which the expected installed base and rate of the expected demand for spare parts is maximal. Our numerical experiments show that the volume of aftersales services increases in the expected usage time if the products face an increasing failure rate. The same experiments also reveal a 20 percent shift of the time at which the expected installed base is maximal in case the expected usage time is increased threefold. At the same time, we observe a boosting effect of the intensity of the sales process on this point in time.Article Citation Count: 21Evaluation of Water Supply Alternatives for Istanbul Using Forecasting and Multi-Criteria Decision Making Methods(Elsevier Ltd, 2020) Savun Hekimoğlu, Başak; Erbay, Barbaros; Hekimoğlu, Mustafa; Burak, SelminWater scarcity is one of the most serious problems of the future due to increasing urbanization and water demand. Urban water planners need to balance increasing water demand with water resources that are under increasing pressure due to climate change and water pollution. Decision makers are forced to select the most appropriate water management alternative with respect to multiple, conflicting criteria based on short and long term projections of water demand in the future. In this paper, we consider water management in Istanbul, a megacity with a population of 15 million. Purpose: The purpose of this paper is to develop a method combining demand forecasting with multi-criteria decision making (MCDM) methods to evaluate five different water supply alternatives with respect to seven criteria using opinions of experts and stakeholders from different sectors. Methodology: To combine forecasting with MCDM, we design a data collection method in which we share our demand forecasts with our experts. For demand forecasting, we compare Holt-Winters, Seasonal Autoregressive Integrated Moving Average (S-ARIMA), and feedforward Artificial Neural Network (ANN) models and select S-ARIMA as the best forecasting model for monthly water consumption data. Generated demand projections are shared with experts from different sectors and collected data is evaluated with Fuzzy Theory using two distinct MCDM models: Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE). Also our analyses are complemented with two sensitivity analyses. Findings: Our results indicate that greywater reuse is the best alternative to satisfy the growing water demand of the city whereas all experts find desalination and inter-basin water transfer as the least attractive solutions. In addition, we adopt the PROMETHEE GDSS procedure to obtain a GAIA plane indicating consensus among experts. Furthermore, we find that our results are moderately sensitive to the number of experts and they are insensitive to changes in experts’ evaluations. Novelty: To the best of our knowledge, our study is the first one incorporating water demand and supply management concepts into the evaluation of alternatives. From a methodological perspective, water demand projections have never been used in an MCDM study in the literature. Also, this paper contributes to the literature with a mathematical construction of consensus and Monte Carlo simulations for the sufficiency of experts consulted in a study.
- «
- 1 (current)
- 2
- 3
- »