Markov-Modulated Analysis of a Spare Parts System With Random Lead Times and Disruption Risks

gdc.relation.journal European Journal of Operational Research en_US
dc.contributor.author Hekimoğlu, Mustafa
dc.contributor.author van der Laan, Ervin
dc.contributor.author Dekker, Rommert
dc.contributor.other Industrial Engineering
dc.contributor.other 05. Faculty of Engineering and Natural Sciences
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2019-06-27T08:03:45Z
dc.date.available 2019-06-27T08:03:45Z
dc.date.issued 2018
dc.description.abstract Spare parts supply chains are highly dependent on the dynamics of their installed bases. A decreasing number of capital products in use increases the nonstationary supply-side risk especially towards the end-of-life of capital products. This supply-side risk appears to present itself through varying lead times coupled with supply disruptions. To model the nonstationary supply-side risk we consider an exogenous Markov chain that modulates random lead times and disruption probabilities. Assuming that order crossovers do not occur we prove the optimality of a state-dependent base stock policy. Later we conduct an impact study to understand the value of considering stochastic lead times and supply disruption risk in spare parts inventory control. Our results indicate that the coupled effect of random lead times and disruptions can be larger than the summation of individual effects even for moderate lead time variances. Also the effect of nonstationarity on total cost can be as large as the summation of all risk factors combined. In addition to this managerial insight we present a procedure for supply risk mitigation based on an empirical model and our mathematical model. Experiments on a real business case indicate that the procedure is capable of reducing costs while making the inventory system more prepared for disruptions. (C) 2018 Elsevier B.V. All rights reserved. en_US]
dc.identifier.citationcount 7
dc.identifier.doi 10.1016/j.ejor.2018.02.040 en_US
dc.identifier.issn 0377-2217 en_US
dc.identifier.issn 1872-6860 en_US
dc.identifier.issn 0377-2217
dc.identifier.issn 1872-6860
dc.identifier.scopus 2-s2.0-85044045315 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/837
dc.identifier.uri https://doi.org/10.1016/j.ejor.2018.02.040
dc.language.iso en en_US
dc.publisher Elsevier Science Bv en_US
dc.relation.ispartof European Journal of Operational Research
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Supply chain management en_US
dc.subject Supply risk en_US
dc.subject Stochastic lead times en_US
dc.subject Optimal inventory control en_US
dc.subject Spare parts en_US
dc.title Markov-Modulated Analysis of a Spare Parts System With Random Lead Times and Disruption Risks en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Hekimoğlu, Mustafa en_US
gdc.author.institutional Hekimoğlu, Mustafa
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Endüstri Mühendisliği Bölümü en_US
gdc.description.endpage 922
gdc.description.issue 3
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 909 en_US
gdc.description.volume 269 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W2792328411
gdc.identifier.wos WOS:000432768700010 en_US
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.impulse 7.0
gdc.oaire.influence 3.7407535E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Supply risk
gdc.oaire.keywords Spare parts
gdc.oaire.keywords Optimal inventory control
gdc.oaire.keywords Stochastic lead times
gdc.oaire.keywords RSM LIS
gdc.oaire.keywords Supply chain management
gdc.oaire.popularity 6.212658E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0209 industrial biotechnology
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.fwci 2.708
gdc.openalex.normalizedpercentile 0.94
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 11
gdc.plumx.mendeley 56
gdc.plumx.scopuscites 16
gdc.scopus.citedcount 16
gdc.wos.citedcount 12
relation.isAuthorOfPublication 533132ce-5631-4068-91c5-2806df0f65bb
relation.isAuthorOfPublication.latestForDiscovery 533132ce-5631-4068-91c5-2806df0f65bb
relation.isOrgUnitOfPublication 28868d0c-e9a4-4de1-822f-c8df06d2086a
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery 28868d0c-e9a4-4de1-822f-c8df06d2086a

Files