Sampling Rate-Corrected Analysis of Irregularly Sampled Time Series

dc.contributor.author Braun, Tobias
dc.contributor.author Fernandez, Cinthya N.
dc.contributor.author Eroglu, Deniz
dc.contributor.author Hartland, Adam
dc.contributor.author Breitenbach, Sebastian F. M.
dc.contributor.author Marwan, Norbert
dc.date.accessioned 2023-10-19T15:11:33Z
dc.date.available 2023-10-19T15:11:33Z
dc.date.issued 2022
dc.description.abstract The analysis of irregularly sampled time series remains a challenging task requiring methods that account for continuous and abrupt changes of sampling resolution without introducing additional biases. The edit distance is an effective metric to quantitatively compare time series segments of unequal length by computing the cost of transforming one segment into the other. We show that transformation costs generally exhibit a nontrivial relationship with local sampling rate. If the sampling resolution undergoes strong variations, this effect impedes unbiased comparison between different time episodes. We study the impact of this effect on recurrence quantification analysis, a framework that is well suited for identifying regime shifts in nonlinear time series. A constrained randomization approach is put forward to correct for the biased recurrence quantification measures. This strategy involves the generation of a type of time series and time axis surrogates which we call sampling-rate-constrained (SRC) surrogates. We demonstrate the effectiveness of the proposed approach with a synthetic example and an irregularly sampled speleothem proxy record from Niue island in the central tropical Pacific. Application of the proposed correction scheme identifies a spurious transition that is solely imposed by an abrupt shift in sampling rate and uncovers periods of reduced seasonal rainfall predictability associated with enhanced El Nino-Southern Oscillation and tropical cyclone activity. en_US
dc.description.sponsorship Deutsche Forschungsgemeinschaft [MA4759/11-1]; Nonlinear empirical mode analysis of complex systems; European Union [691037]; TUB.ITAK [118C236]; BAGEP Award of the Science Academy; German Academic Exchange Service (DAAD); Royal Society of New Zealand [RIS-UOW1501]; Rutherford Discovery Fellowship program [RDF-UOW1601]; Marie Curie Actions (MSCA) [691037] Funding Source: Marie Curie Actions (MSCA) en_US
dc.description.sponsorship This research was supported by the Deutsche Forschungsgemeinschaft in the context of the DFG Project No. MA4759/11-1 Nonlinear empirical mode analysis of complex systems: Development of general approach and application in climate. It also received financial support from the European Union's Horizon 2020 Research and Innovation program (Marie Sklodowska-Curie Grant Agreement No. 691037). D.E. acknowledges funding by TUB.ITAK (Grant No. 118C236) and the BAGEP Award of the Science Academy. C.N.F. acknowledges financial support from the German Academic Exchange Service (DAAD). A.H. acknowledges support from the Royal Society of New Zealand (Grant No. RIS-UOW1501), and the Rutherford Discovery Fellowship program (Grant No. RDF-UOW1601). The authors declare that they have no conflict of interest. en_US
dc.identifier.doi 10.1103/PhysRevE.105.024206 en_US
dc.identifier.issn 2470-0045
dc.identifier.issn 2470-0053
dc.identifier.scopus 2-s2.0-85125576290 en_US
dc.identifier.uri https://doi.org/10.1103/PhysRevE.105.024206
dc.identifier.uri https://hdl.handle.net/20.500.12469/5074
dc.language.iso en en_US
dc.publisher Amer Physical Soc en_US
dc.relation.ispartof Physical Review E en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Recurrence Plots En_Us
dc.subject Spectral-Analysis En_Us
dc.subject Algorithms En_Us
dc.subject Statistics En_Us
dc.subject Estimators En_Us
dc.subject Climate En_Us
dc.subject Recurrence Plots
dc.subject Spectral-Analysis
dc.subject Algorithms
dc.subject Statistics
dc.subject Estimators
dc.subject Climate
dc.title Sampling Rate-Corrected Analysis of Irregularly Sampled Time Series en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Eroglu, Deniz/0000-0001-6725-6949
gdc.author.id Marwan, Norbert/0000-0003-1437-7039
gdc.author.id Braun, Tobias/0000-0002-3095-8960
gdc.author.id Breitenbach, Sebastian/0000-0001-9615-2065
gdc.author.wosid Eroglu, Deniz/GVS-9233-2022
gdc.author.wosid Marwan, Norbert/D-9576-2011
gdc.author.wosid Fernandez, Cinthya/IXN-1160-2023
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.departmenttemp [Braun, Tobias; Marwan, Norbert] Leibniz Assoc, Potsdam Inst Climate Impact Res PIK, D-14473 Potsdam, Germany; [Fernandez, Cinthya N.] Ruhr Univ Bochum, Inst Geol Mineral & Geophys, D-44801 Bochum, Germany; [Eroglu, Deniz] Kadir Has Univ, Fac Engn & Nat Sci, TR-34083 Istanbul, Turkey; [Hartland, Adam] Univ Waikato, Sch Sci, Environm Res Inst, Hamilton 3240, Waikato, New Zealand; [Breitenbach, Sebastian F. M.] Northumbria Univ, Dept Geog & Environm Sci, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England; [Marwan, Norbert] Univ Potsdam, Inst Geosci, D-14473 Potsdam, Germany en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 105 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W4200633312
gdc.identifier.pmid 35291153 en_US
gdc.identifier.wos WOS:000766300100009 en_US
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.diamondjournal false
gdc.oaire.impulse 6.0
gdc.oaire.influence 2.6725786E-9
gdc.oaire.isgreen true
gdc.oaire.keywords ANZSRC::40 Engineering
gdc.oaire.keywords FOS: Computer and information sciences
gdc.oaire.keywords 550
gdc.oaire.keywords ddc:550
gdc.oaire.keywords Spectral-Analysis
gdc.oaire.keywords Climate
gdc.oaire.keywords Statistics
gdc.oaire.keywords FOS: Physical sciences
gdc.oaire.keywords ANZSRC::51 Physical sciences
gdc.oaire.keywords F800
gdc.oaire.keywords Nonlinear Sciences - Chaotic Dynamics
gdc.oaire.keywords ANZSRC::49 Mathematical sciences
gdc.oaire.keywords 530
gdc.oaire.keywords Methodology (stat.ME)
gdc.oaire.keywords Recurrence Plots
gdc.oaire.keywords Estimators
gdc.oaire.keywords Institut für Geowissenschaften
gdc.oaire.keywords Chaotic Dynamics (nlin.CD)
gdc.oaire.keywords Algorithms
gdc.oaire.keywords Statistics - Methodology
gdc.oaire.popularity 6.3251537E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.sciencefields 0103 physical sciences
gdc.openalex.collaboration International
gdc.openalex.fwci 1.61660076
gdc.openalex.normalizedpercentile 0.86
gdc.opencitations.count 6
gdc.plumx.mendeley 25
gdc.plumx.pubmedcites 3
gdc.plumx.scopuscites 7
gdc.scopus.citedcount 7
gdc.virtual.author Eroğlu, Deniz
gdc.wos.citedcount 6
relation.isAuthorOfPublication 5bae555f-a8aa-4b95-bcfe-54cc47812e13
relation.isAuthorOfPublication.latestForDiscovery 5bae555f-a8aa-4b95-bcfe-54cc47812e13
relation.isOrgUnitOfPublication 71ce8622-7449-4a6a-8fad-44d881416546
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery 71ce8622-7449-4a6a-8fad-44d881416546

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
5074.pdf
Size:
2.66 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text