Audio detection using machine learning & transfer learning models

dc.contributor.advisor Dağ, Hasan en_US
dc.contributor.author Acar, Mesut
dc.contributor.author Dağ, Hasan
dc.contributor.other Management Information Systems
dc.date.accessioned 2022-03-18T07:43:53Z
dc.date.available 2022-03-18T07:43:53Z
dc.date.issued 2021
dc.department Enstitüler, Lisansüstü Eğitim Enstitüsü, Yönetim Bilişim Sistemleri Ana Bilim Dalı en_US
dc.description.abstract In this paper, using datasets ESC-50 & ESC-10 of environmental sounds, machine learning algorithms, and feature extraction methods are used to develop recognition performance. K-NN, SVM, Random Forest are used for comparing the recognition results. The different feature extraction methods in the literature are used to get more meaningful attributes from these datasets and obtain a higher accuracy rate. This approach shows that SVM algorithm has a significantly good result with accuracy scores. The best accuracy scores obtained by classic machine learning algorithms are %42,15 for ESC-50 and %77,7 for ESC-10. In addition to this, the experiments have been done with a pre-trained ResNet neural network as a backbone, which achieves successful results despite the machine learning models. In this study, a higher accuracy rate is achieved from baseline machine learning algorithms in literature and using transfer learning with pre-trained Resnet backbones to reach some state of art results. The accuracy scores are %68,95 for ESC-50 and %87,25 for ESC-10. en_US
dc.description.abstract Bu çalışmada çevre seslerinden oluşan ESC-50 ve ESC-10 veri seti, çeşitli makine öğrenmesi, transfer öğrenme altyapısı ve farklı öznitelik çıkarımı yöntemleri kullanarak sınıflandırma çalışmaları yapılmıştır. K-NN, SVM, Rastgele Orman makine öğrenimi algoritmaları kullanılmıştır. Farklı öznitelik çıkarım algoritmaları kullanılarak, bu veri seti için makine öğrenmesi algoritmalarında farklı sonuçlar elde edilmiştir. Bu yaklaşımda SVM algoritmasın gözle görülür bir şekilde performansının attığı gözlemlenmiştir. Klasik makine öğrenmesi algoritmaları ile elde edilen en iyi doğruluk puanları ESC-50 için %42,15 ve ESC-10 için %77,7'dir. Buna ek olarak, makine öğrenmesi modellerinden daha başarılı sonuçlar elde eden, omurga olarak önceden eğitilmiş bir ResNet sinir ağı ile deneyler yapılmıştır. Yapılan deneylerde, literatürdeki temel makine öğrenmesi algoritmalarından ve literatürdeki iyi sonuçlara ulaşmak için önceden eğitilmiş Resnet omurgaları ile transfer öğrenmesi kullanılarak daha yüksek bir doğruluk oranı elde edilmiştir. Resnet algoritması ile ESC-50 için %68,95, ESC-10 için ise %87,25 doğruluk oranı elde edilmiştir. en_US]
dc.identifier.uri https://hdl.handle.net/20.500.12469/4283
dc.identifier.yoktezid 704061 en_US
dc.institutionauthor Acar, Mesut en_US
dc.language.iso en en_US
dc.publisher Kadir Has Üniversitesi en_US
dc.relation.publicationcategory Tez en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject :Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol en_US
dc.subject Computer Engineering and Computer Science and Control en_US
dc.subject Bilim ve Teknoloji en_US
dc.subject Science and Technology en_US
dc.subject Makine öğrenmesi en_US
dc.subject Machine learning en_US
dc.subject Makine öğrenmesi yöntemleri en_US
dc.subject Machine learning methods en_US
dc.subject Yapay zeka en_US
dc.subject Artificial intelligence en_US
dc.title Audio detection using machine learning & transfer learning models en_US
dc.title.alternative Makine Öğrenmesi ve Transfer Öğrenimi Kullanılarak Ses Tanıma en_US
dc.type Master Thesis en_US
dspace.entity.type Publication
relation.isAuthorOfPublication e02bc683-b72e-4da4-a5db-ddebeb21e8e7
relation.isAuthorOfPublication.latestForDiscovery e02bc683-b72e-4da4-a5db-ddebeb21e8e7
relation.isOrgUnitOfPublication ff62e329-217b-4857-88f0-1dae00646b8c
relation.isOrgUnitOfPublication.latestForDiscovery ff62e329-217b-4857-88f0-1dae00646b8c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
704061.pdf
Size:
2.11 MB
Format:
Adobe Portable Document Format
Description:

Collections