Early Steps in Automated Behavior Mapping via Indoor Sensors

dc.contributor.author Arsan, Taner
dc.contributor.author Arsan, Taner
dc.contributor.author Kepez, Orçun
dc.contributor.author Kepez, Orçun
dc.contributor.other Interior Architecture and Environmental Design
dc.contributor.other Computer Engineering
dc.date.accessioned 2019-06-27T08:01:14Z
dc.date.available 2019-06-27T08:01:14Z
dc.date.issued 2017
dc.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
dc.department Fakülteler, Sanat ve Tasarım Fakültesi, İç Mimarlık ve Çevre Tasarımı Bölümü en_US
dc.description.abstract Behavior mapping (BM) is a spatial data collection technique in which the locational and behavioral information of a user is noted on a plan layout of the studied environment. Among many indoor positioning technologies we chose Wi-Fi BLE beacon and ultra-wide band (UWB) sensor technologies for their popularity and investigated their applicability in BM. We tested three technologies for error ranges and found an average error of 1.39 m for Wi-Fi in a 36 m(2) test area (6m x 6 m) 0.86 m for the BLE beacon in a 37.44 m(2) test area (9.6 m x 3.9 m) and 0.24 m for ultra-wide band sensors in a 36 m(2) test area (6 m x 6 m). We simulated the applicability of these error ranges for real-time locations by using a behavioral dataset collected from an active learning classroom. We used two UWB tags simultaneously by incorporating a custom-designed ceiling system in a new 39.76 m(2) test area (7.35 m x 5.41 m). We considered 26 observation points and collected data for 180 s for each point (total 4680) with an average error of 0.2072 m for 23 points inside the test area. Finally we demonstrated the use of ultra-wide band sensor technology for BM. en_US]
dc.identifier.citationcount 9
dc.identifier.doi 10.3390/s17122925 en_US
dc.identifier.issn 1424-8220 en_US
dc.identifier.issn 1424-8220
dc.identifier.issue 12
dc.identifier.pmid 29258178 en_US
dc.identifier.scopus 2-s2.0-85040359009 en_US
dc.identifier.scopusquality Q1
dc.identifier.uri https://hdl.handle.net/20.500.12469/312
dc.identifier.uri https://doi.org/10.3390/s17122925
dc.identifier.volume 17 en_US
dc.identifier.wos WOS:000423285800224 en_US
dc.institutionauthor Arsan, Taner en_US
dc.institutionauthor Kepez, Orçun en_US
dc.language.iso en en_US
dc.publisher MDPI en_US
dc.relation.journal Sensors en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 10
dc.subject Sensors and technologies for indoor localization systems en_US
dc.subject Positioning strategies and algorithms en_US
dc.subject Behavior mapping en_US
dc.subject Activity monitoring en_US
dc.subject Ultra-wide band sensors en_US
dc.title Early Steps in Automated Behavior Mapping via Indoor Sensors en_US
dc.type Article en_US
dc.wos.citedbyCount 11
dspace.entity.type Publication
relation.isAuthorOfPublication 7959ea6c-1b30-4fa0-9c40-6311259c0914
relation.isAuthorOfPublication 0815099a-9281-471b-b5c2-832d10ad983d
relation.isAuthorOfPublication.latestForDiscovery 7959ea6c-1b30-4fa0-9c40-6311259c0914
relation.isOrgUnitOfPublication 0a9f6edd-770d-4882-af28-4100f62c19f0
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication.latestForDiscovery 0a9f6edd-770d-4882-af28-4100f62c19f0

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Early Steps in Automated Behavior Mapping via Indoor Sensors.pdf
Size:
4.4 MB
Format:
Adobe Portable Document Format
Description: