Photolithography-Based Microfabrication of Biodegradable Flexible and Stretchable Sensors

dc.authoridIstif, Emin/0000-0003-4700-7050
dc.authoridMirzajani, Hadi/0000-0001-7747-2389
dc.authorwosidIstif, Emin/JGM-0202-2023
dc.authorwosidMirzajani, Hadi/HTP-0624-2023
dc.authorwosidMirzajani, Hadi/Q-1792-2017
dc.contributor.authorBathaei, Mohammad Javad
dc.contributor.authorSingh, Rahul
dc.contributor.authorMirzajani, Hadi
dc.contributor.authorIstif, Emin
dc.contributor.authorAkhtar, Muhammad Junaid
dc.contributor.authorAbbasiasl, Taher
dc.contributor.authorBeker, Levent
dc.date.accessioned2023-10-19T15:13:09Z
dc.date.available2023-10-19T15:13:09Z
dc.date.issued2023
dc.department-temp[Bathaei, Mohammad Javad; Beker, Levent] Koc Univ, Dept Biomed Sci & Engn, TR-34450 Istanbul, Turkey; [Singh, Rahul; Mirzajani, Hadi; Abbasiasl, Taher; Beker, Levent] Koc Univ, Dept Mech Engn, TR-34450 Istanbul, Turkey; [Istif, Emin] Kadir Has Univ, Fac Engn & Nat Sci, TR-34083 Istanbul, Turkey; [Akhtar, Muhammad Junaid] Koc Univ, Dept Elect & Elect Engn, TR-34450 Istanbul, Turkey; [Beker, Levent] Koc Univ, Res Ctr Translat Med KUTTAM, TR-34450 Istanbul, Turkey; [Beker, Levent] Koc Univ, Nanofabricat & Nanocharacterizat Ctr Sci & Technol, TR-34450 Istanbul, Turkeyen_US
dc.description.abstractBiodegradable sensors based on integrating conductive layers with polymeric materials in flexible and stretchable forms have been established. However, the lack of a generalized microfabrication method results in large-sized, low spatial density, and low device yield compared to the silicon-based devices manufactured via batch-compatible microfabrication processes. Here, a batch fabrication-compatible photolithography-based microfabrication approach for biodegradable and highly miniaturized essential sensor components is presented on flexible and stretchable substrates. Up to 1600 devices are fabricated within a 1 cm(2) footprint and then the functionality of various biodegradable passive electrical components, mechanical sensors, and chemical sensors is demonstrated on flexible and stretchable substrates. The results are highly repeatable and consistent, proving the proposed method's high device yield and high-density potential. This simple, innovative, and robust fabrication recipe allows complete freedom over the applicability of various biodegradable materials with different properties toward the unique application of interests. The process offers a route to utilize standard micro-fabrication procedures toward scalable fabrication of highly miniaturized flexible and stretchable transient sensors and electronics.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBITAK) [118C295, 120M363]; Marie Sklodowska-Curie Individual Fellowship [H2020-MSCA-IF-2018-840786]; ERC StG [101043119]; Marie Sklodowska-Curie Postdoctoral Fellowship [H2020-MSCA-IF-2021-101068646]; European Research Council (ERC) [101043119] Funding Source: European Research Council (ERC)en_US
dc.description.sponsorshipM.J.B. and R.S. contributed equally to this work. M.J.B., H.M., T.A., and L.B. were supported by The Scientific and Technological Research Council of Turkey (TUBITAK) through 2232 (#118C295) and 3501 (120M363) programs. L.B. acknowledges the support through a Marie Sklodowska-Curie Individual Fellowship (H2020-MSCA-IF-2018-840786, BrainWatch) and ERC StG (Grant no: 101043119). H.M. acknowledges the support through a Marie Sklodowska-Curie Postdoctoral Fellowship (H2020-MSCA-IF-2021-101068646, HAMP). The authors gratefully acknowledge Mr. Seckin Akinci for discussions, and n2STAR - Koc University Nanofabrication and Nano-characterization Center for Scientific and Technological Advanced Research and Koc University Surface Science and Technology Center (KUYTAM) for access to the infrastructures.en_US
dc.identifier.citation19
dc.identifier.doi10.1002/adma.202207081en_US
dc.identifier.issn0935-9648
dc.identifier.issn1521-4095
dc.identifier.issue6en_US
dc.identifier.pmid36401580en_US
dc.identifier.scopus2-s2.0-85144223223en_US
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1002/adma.202207081
dc.identifier.urihttps://hdl.handle.net/20.500.12469/5618
dc.identifier.volume35en_US
dc.identifier.wosWOS:000899642200001en_US
dc.identifier.wosqualityQ1
dc.khas20231019-WoSen_US
dc.language.isoenen_US
dc.publisherWiley-V C H Verlag Gmbhen_US
dc.relation.ispartofAdvanced Materialsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectTransfer Printing TechniquesEn_Us
dc.subjectPolylactic AcidEn_Us
dc.subjectSilkEn_Us
dc.subjectBiocompatibilityEn_Us
dc.subjectLithographyEn_Us
dc.subjectFabricationEn_Us
dc.subjectTransfer Printing Techniques
dc.subjectPolylactic Acid
dc.subjectbiodegradable devicesen_US
dc.subjectSilk
dc.subjectflexibleen_US
dc.subjectBiocompatibility
dc.subjectmicrofabricationen_US
dc.subjectLithography
dc.subjectstretchableen_US
dc.subjectFabrication
dc.subjecttransient electronicsen_US
dc.titlePhotolithography-Based Microfabrication of Biodegradable Flexible and Stretchable Sensorsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
5617.pdf
Size:
3.14 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text