Comparative Classification Performances of Filter Model Feature Selection Algorithms in Eeg Based Brain Computer Interface System

dc.contributor.author Bulut, Cem
dc.contributor.author Balli, Tugce
dc.contributor.author Yetkin, E. Fatih
dc.date.accessioned 2023-10-19T15:11:47Z
dc.date.available 2023-10-19T15:11:47Z
dc.date.issued 2023
dc.description.abstract Brain-computer interface (BCI) systems enable individuals to use a computer or assistive technologies such as a neuroprosthetic arm by translating their brain electrical activity into control commands. In this study, the use of filter-based feature selection methods for design of BCI systems is investigated. EEG recordings obtained from a BCI system designed for the control of a neuroprosthetic device are analyzed. Two feature sets were created; the first set was band power features from six main frequency bands (delta (1.0-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-25 Hz), high-beta (25-30Hz) and gamma (30-50 Hz)) and the second set was band power features from ten frequency sub-bands (delta (1-4 Hz), theta (4-8 Hz), alpha1 (8-10 Hz), alpha2 (10-12 Hz), beta1 (12-15 Hz), beta2 (15-18 Hz), beta3 (18-25 Hz), gamma1 (30-35 Hz), gamma2 (35-40 Hz), gamma3 (40-50 Hz)). Ten filter-based feature selection methods are investigated along with linear discriminant analysis, random forests, decision tree and support vector machines algorithms. The results indicate that feature selection methods leads to a higher classification accuracy and eigen value centrality (Ecfs) and infinite feature selection (Inffs) methods have consistently provided higher accuracy rates as compared to rest of the feature selection methods. en_US
dc.identifier.doi 10.17341/gazimmfd.978895 en_US
dc.identifier.issn 1300-1884
dc.identifier.issn 1304-4915
dc.identifier.scopus 2-s2.0-85153856204 en_US
dc.identifier.uri https://doi.org/10.17341/gazimmfd.978895
dc.identifier.uri 1197890
dc.identifier.uri https://hdl.handle.net/20.500.12469/5217
dc.language.iso en en_US
dc.publisher Gazi Univ, Fac Engineering Architecture en_US
dc.relation.ispartof Journal of The Faculty of Engineering and Architecture of Gazi University en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject BCI en_US
dc.subject EEG en_US
dc.subject band power en_US
dc.subject feature selection en_US
dc.subject classification en_US
dc.title Comparative Classification Performances of Filter Model Feature Selection Algorithms in Eeg Based Brain Computer Interface System en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial true
gdc.description.departmenttemp [Bulut, Cem] Istanbul Univ Cerrahpasa, Dept Comp Engn, TR-34320 Istanbul, Turkiye; [Balli, Tugce; Yetkin, E. Fatih] Kadir Has Univ, Management Informat Syst Dept, TR-34083 Istanbul, Turkiye en_US
gdc.description.endpage 2407 en_US
gdc.description.issue 4 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 2397 en_US
gdc.description.volume 38 en_US
gdc.description.wosquality Q3
gdc.identifier.openalex W4365133805
gdc.identifier.trdizinid https://search.trdizin.gov.tr/yayin/detay/1197890 en_US
gdc.identifier.wos WOS:000974876000034 en_US
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type TR-Dizin
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 2.0
gdc.oaire.influence 2.6233968E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Engineering
gdc.oaire.keywords BBA;EEG;bant gücü;öznitelik seçme;sınıflandırma
gdc.oaire.keywords Mühendislik
gdc.oaire.popularity 3.5872936E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0302 clinical medicine
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration International
gdc.openalex.fwci 0.5275455
gdc.openalex.normalizedpercentile 0.56
gdc.opencitations.count 2
gdc.plumx.mendeley 7
gdc.plumx.scopuscites 4
gdc.scopus.citedcount 4
gdc.virtual.author Ballı, Tuğçe
gdc.virtual.author Yetkin, Emrullah Fatih
gdc.wos.citedcount 3
relation.isAuthorOfPublication 97c3a2d8-b41c-40fe-9319-e0f9fc8516eb
relation.isAuthorOfPublication 81114204-31da-4513-a19f-b5446f8a3a08
relation.isAuthorOfPublication.latestForDiscovery 97c3a2d8-b41c-40fe-9319-e0f9fc8516eb
relation.isOrgUnitOfPublication c10ffc80-6da5-4b86-b481-aae660325ae5
relation.isOrgUnitOfPublication ff62e329-217b-4857-88f0-1dae00646b8c
relation.isOrgUnitOfPublication acb86067-a99a-4664-b6e9-16ad10183800
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery c10ffc80-6da5-4b86-b481-aae660325ae5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
5217.pdf
Size:
501.21 KB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text