Brain Age Estimation From Mri Images Using 2d-Cnn Instead of 3d-Cnn

dc.contributor.author Gezer, Murat
dc.contributor.author Yıldırım, Şüheda
dc.contributor.author Darici, Muazzez Buket
dc.contributor.other Electrical-Electronics Engineering
dc.contributor.other 05. Faculty of Engineering and Natural Sciences
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2023-10-19T14:55:52Z
dc.date.available 2023-10-19T14:55:52Z
dc.date.issued 2021
dc.description.abstract Human Brain Age has become a popular aging biomarker and is used to detect differences among healthy individuals. Because of the specific changes in the human brain with aging, it is possible to estimate patients’ brain ages from their brain images. Due to developments of the ability of CNN in classification and regression from images, in this study, one of the most popular state of the art models, the DenseNet model, is utilized to estimate human brain ages using transfer learning. Since this process requires high memory load with 3D-CNN, 2D-CNN is preferred for the task of Brain Age Estimation (BAE). In this study, some experiments are carried out to reduce the number of computations while preserving the total performance. With this aim, center slices of each three brain planes are used as the inputs of the DenseNet model, and different optimizers such as Adam, Adamax and Adagrad are used for each model. The dataset is selected from the IXI (Information Extraction from Images) MRI data repository. The MAE evaluation metric is used for each model with different input set to evaluate performance. The best achieved Mean Absolute Error (MAE) is 6.3 with the input set which consisted of center slices of the sagittal plane of brain scan and the Adamax parameter. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.26650/acin.911202
dc.identifier.issn 2602-3563
dc.identifier.uri https://doi.org/10.26650/acin.911202
dc.identifier.uri https://search.trdizin.gov.tr/yayin/detay/519985
dc.identifier.uri https://hdl.handle.net/20.500.12469/4593
dc.language.iso en en_US
dc.relation.ispartof Acta Infologica en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.title Brain Age Estimation From Mri Images Using 2d-Cnn Instead of 3d-Cnn en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Darıcı, Muazzez Buket
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.departmenttemp İstanbul Üniversitesi, Bilişim Bölümü, İstanbul, Türkiye -- Kadir Has Üniversitesi, İktisadi, İdari ve Sosyal Bilimler Fakültesi, Yönetim Bilişim Sistemleri, İstanbul, Türkiye -- Kadir Has Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik - Elektronik Mühendisliği, İstanbul, Türkiye en_US
gdc.description.endpage 385 en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 373 en_US
gdc.description.volume 5 en_US
gdc.identifier.openalex W3199366337
gdc.identifier.trdizinid 519985 en_US].
gdc.identifier.trdizinid 519985 en_US]
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5942106E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Computer Software
gdc.oaire.keywords 2d-cnn
gdc.oaire.keywords QA76.75-76.765
gdc.oaire.keywords brain mri
gdc.oaire.keywords T58.6-58.62
gdc.oaire.keywords Brain Age Estimation;Brain MRI;2D-CNN
gdc.oaire.keywords brain age estimation
gdc.oaire.keywords Information technology
gdc.oaire.keywords Management information systems
gdc.oaire.keywords Computer software
gdc.oaire.keywords T58.5-58.64
gdc.oaire.keywords Bilgisayar Yazılımı
gdc.oaire.keywords Beyin Yaşı Tahmini;Beyin MR;2D-ESA
gdc.oaire.popularity 1.9034052E-9
gdc.oaire.publicfunded false
gdc.openalex.fwci 0.102
gdc.openalex.normalizedpercentile 0.41
gdc.opencitations.count 0
gdc.plumx.mendeley 6
relation.isAuthorOfPublication b5442f04-afe8-48f2-86ef-b8c23df8b01e
relation.isAuthorOfPublication.latestForDiscovery b5442f04-afe8-48f2-86ef-b8c23df8b01e
relation.isOrgUnitOfPublication 12b0068e-33e6-48db-b92a-a213070c3a8d
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery 12b0068e-33e6-48db-b92a-a213070c3a8d

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
4593.pdf
Size:
1.03 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text