A Comparative Study on Denoising From Facial Images Using Convolutional Autoencoder

dc.authoridDarici, Muazzez Buket/0000-0002-0943-9381
dc.contributor.authorDarici, Muazzez Buket
dc.contributor.authorErdem, Zeki
dc.date.accessioned2024-10-15T19:38:54Z
dc.date.available2024-10-15T19:38:54Z
dc.date.issued2023
dc.departmentKadir Has Universityen_US
dc.department-temp[Darici, Muazzez Buket] Kadir Has Univ, Dept Elect Elect Engn, Istanbul, Turkiye; [Erdem, Zeki] Kadir Has Univ, Dept Management Informat Syst, Istanbul, Turkiyeen_US
dc.descriptionDarici, Muazzez Buket/0000-0002-0943-9381en_US
dc.description.abstractDenoising is one of the most important preprocesses in image processing. Noises in images can prevent extracting some important information stored in images. Therefore, before some implementations such as image classification, segmentation, etc., image denoising is a necessity to obtain good results. The purpose of this study is to compare the deep learning techniques and traditional techniques on denoising facial images considering two different types of noise (Gaussian and Salt&Pepper). Gaussian, Median, and Mean filters have been specified as traditional methods. For deep learning methods, deep convolutional denoising autoencoders (CDAE) structured on three different optimizers have been proposed. Both accuracy metrics and computational times have been considered to evaluate the denoising performance of proposed autoencoders, and traditional methods. The utilized standard evaluation metrics are the peak signal to noise ratio (PSNR) and structural similarity index measure (SSIM). It has been observed that overall, while the traditional methods gave results in shorter times in terms of computation times, the autoencoders performed better concerning the evaluation metrics. The CDAE based on the Adam optimizer has been shown the best results in terms of PSNR and SSIM metrics on removing both types of noise.en_US
dc.description.woscitationindexEmerging Sources Citation Index
dc.identifier.citation1
dc.identifier.doi10.35378/gujs.1051655
dc.identifier.endpage1138en_US
dc.identifier.issn2147-1762
dc.identifier.issue3en_US
dc.identifier.scopusqualityQ3
dc.identifier.startpage1122en_US
dc.identifier.urihttps://doi.org/10.35378/gujs.1051655
dc.identifier.urihttps://hdl.handle.net/20.500.12469/6293
dc.identifier.volume36en_US
dc.identifier.wosWOS:001108851000024
dc.institutionauthorDarıcı, Muazzez Buket
dc.language.isoenen_US
dc.publisherGazi Univen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDenoisingen_US
dc.subjectAutoencoderen_US
dc.subjectSalt&pepper noiseen_US
dc.subjectGaussian noiseen_US
dc.titleA Comparative Study on Denoising From Facial Images Using Convolutional Autoencoderen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationb5442f04-afe8-48f2-86ef-b8c23df8b01e
relation.isAuthorOfPublication.latestForDiscoveryb5442f04-afe8-48f2-86ef-b8c23df8b01e

Files