Random capsule network (CAPSNET) forest model for imbalanced malware type classification task

Loading...
Thumbnail Image

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Kadir Has Üniversitesi

Research Projects

Organizational Units

Journal Issue

Abstract

Behavior of malware varies depending the malware types, which affect the strategies of the system protection software. Many malware classification models, empowered by machine and/or deep learning, achieve superior accuracy for predicting malware types. Machine learning-based models need to do heavy feature engineering work, which affects the performance of the models greatly. On the other hand, deep learning-based models require less effort in feature engineering when compared to that of the machine learning-based models. However, traditional deep learning architectures' components, such as max and average pooling, cause architecture to be more complex and the models to be more sensitive to data. The capsule network architectures, on the other hand, reduce the aforementioned complexities by eliminating the pooling components. Additionally, capsule network architectures based models are less sensitive to data, unlike the classical convolutional neural network architectures. This thesis proposes an ensemble capsule network model based on the bootstrap aggregating technique. The proposed method is tested on two widely used, highly imbalanced datasets (Malimg and BIG2015), for which the-state-of-the-art results are well-known and can be used for comparison purposes. The proposed model achieves the highest F-Score, which is 0.9820, for the BIG2015 dataset and F-Score, which is 0.9661, for the Malimg dataset. Our model also reaches the-state-of-the-art, using 99.7% lower the number of trainable parameters than the best model in the literature.
Kötü amaçlı yazılımın davranışı, sistem koruma yazılımının stratejilerini etkileyen kötü amaçlı yazılım türlerine bağlı olarak değişir. Yapay ve/veya derin öğrenme ile güçlendirilmiş bir çok kötü amaçlı yazılım sınıflandırma modeli, kötü amaçlı yazılım türlerini tahmin etmek için üstün doğruluklar elde eder. Yapay öğrenme tabanlı modeller performanslarını büyük ölçüde etkileyen ağır öznitelik mühendisliği çalışmalarına ihtiyaç duyarlar. Öte yandan, derin öğrenme tabanlı modeller, yapay öğrenme tabanlı modellere kıyasla öznitelik mühendisliğine daha az ihtiyaç duyarlar. Bununla birlikte, geleneksel derin öğrenme mimarilerinin maksimum ve ortalama havuzlama gibi bileşenleri, mimarinin daha karmaşık olmasına ve modellerin verilere daha duyarlı olmasına neden olur. Kapsül ağ mimarileri ise havuzlama bileşenlerini ortadan kaldırarak yukarıda bahsedilen karmaşıklıkları azaltır. Ek olarak, kapsül ağ mimarisi tabanlı modeller, klasik evrişimli sinir ağı mimarilerinin aksine verilere daha az duyarlıdır. Bu tez, rastgele örnekleme toplama tekniğine dayalı bir topluluk kapsül ağı modeli Önermektedir. Önerilen yöntem, en son sonuçlarının iyi bilindiği ve karşılaştırma amacıyla kullanılabilecek, yaygın olarak kullanılan, oldukça dengesiz iki veri kümesi (Malimg ve BIG2015) üzerinde test edilmiştir. Önerilen model, BIG2015 veri kümesi için 0.9820 olan en yüksek F-Skoruna ve Malimg veri kümesi için 0.9661 olan F-Skoruna ulaşmaktadır. Modelimiz aynı zamanda literatürdeki en iyi modele göre %99,7 daha az eğitilebilir parametre kullanarak en son teknolojiye ulaşmaktadır.

Description

Keywords

Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control

Turkish CoHE Thesis Center URL

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

1

End Page

80

Collections