Improving Performances of Suboptimal Greedy Iterative Biclustering Heuristics Via Localization

gdc.relation.journal Bioinformatics en_US
dc.contributor.author Erten, Cesim
dc.contributor.author Sözdinler, Melih
dc.date.accessioned 2019-06-27T08:05:06Z
dc.date.available 2019-06-27T08:05:06Z
dc.date.issued 2010
dc.description.abstract Motivation: Biclustering gene expression data is the problem of extracting submatrices of genes and conditions exhibiting significant correlation across both the rows and the columns of a data matrix of expression values. Even the simplest versions of the problem are computationally hard. Most of the proposed solutions therefore employ greedy iterative heuristics that locally optimize a suitably assigned scoring function. Methods: We provide a fast and simple pre-processing algorithm called localization that reorders the rows and columns of the input data matrix in such a way as to group correlated entries in small local neighborhoods within the matrix. The proposed localization algorithm takes its roots from effective use of graph-theoretical methods applied to problems exhibiting a similar structure to that of biclustering. In order to evaluate the effectivenesss of the localization pre-processing algorithm we focus on three representative greedy iterative heuristic methods. We show how the localization pre-processing can be incorporated into each representative algorithm to improve biclustering performance. Furthermore we propose a simple biclustering algorithm Random Extraction After Localization (REAL) that randomly extracts submatrices from the localization pre-processed data matrix eliminates those with low similarity scores and provides the rest as correlated structures representing biclusters. Results: We compare the proposed localization pre-processing with another pre-processing alternative non-negative matrix factorization. We show that our fast and simple localization procedure provides similar or even better results than the computationally heavy matrix factorization pre-processing with regards to H-value tests. We next demonstrate that the performances of the three representative greedy iterative heuristic methods improve with localization pre-processing when biological correlations in the form of functional enrichment and PPI verification constitute the main performance criteria. The fact that the random extraction method based on localization REAL performs better than the representative greedy heuristic methods under same criteria also confirms the effectiveness of the suggested pre-processing method. en_US]
dc.identifier.citationcount 4
dc.identifier.doi 10.1093/bioinformatics/btq473 en_US
dc.identifier.issn 1367-4803 en_US
dc.identifier.issn 1367-4803
dc.identifier.issn 1367-4811
dc.identifier.scopus 2-s2.0-77957801955 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/1031
dc.identifier.uri https://doi.org/10.1093/bioinformatics/btq473
dc.language.iso en en_US
dc.publisher Oxford University Press en_US
dc.relation.ispartof Bioinformatics
dc.rights info:eu-repo/semantics/openAccess en_US
dc.title Improving Performances of Suboptimal Greedy Iterative Biclustering Heuristics Via Localization en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Erten, Cesim en_US
gdc.author.institutional Erten, Cesim
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.endpage 2600
gdc.description.issue 20
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 2594 en_US
gdc.description.volume 26 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W2106418887
gdc.identifier.pmid 20733064 en_US
gdc.identifier.wos WOS:000282749700013 en_US
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.downloads 3
gdc.oaire.impulse 3.0
gdc.oaire.influence 3.4256877E-9
gdc.oaire.isgreen true
gdc.oaire.keywords N/A
gdc.oaire.keywords Databases, Factual
gdc.oaire.keywords Gene Expression Profiling
gdc.oaire.keywords Cluster Analysis
gdc.oaire.keywords Computational Biology
gdc.oaire.keywords Algorithms
gdc.oaire.keywords Oligonucleotide Array Sequence Analysis
gdc.oaire.keywords Pattern Recognition, Automated
gdc.oaire.popularity 8.005876E-10
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0301 basic medicine
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0206 medical engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.views 2
gdc.openalex.fwci 0.533
gdc.openalex.normalizedpercentile 0.57
gdc.opencitations.count 7
gdc.plumx.crossrefcites 6
gdc.plumx.mendeley 17
gdc.plumx.pubmedcites 2
gdc.plumx.scopuscites 7
gdc.scopus.citedcount 7
gdc.wos.citedcount 4
relation.isAuthorOfPublication ba94d962-58f9-4c10-bdc8-667be0ec3b67
relation.isAuthorOfPublication.latestForDiscovery ba94d962-58f9-4c10-bdc8-667be0ec3b67
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Improving performances of suboptimal greedy iterative biclustering heuristics via localization.pdf
Size:
291.32 KB
Format:
Adobe Portable Document Format
Description: