Türkiye'de Arazi Fiyatlarının Tahmini
No Thumbnail Available
Date
2025
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Bu çalışma, tarımsal arazilerin fiyatlandırılması üzerine iki temel dinamiği incelemektedir: birincisi, içsel ve bölgesel değişkenlere bağlı olarak fiyat performansı; ikincisi ise fiyat belirleme stratejilerinin anlaşılmasıdır. Araştırma sonucunda fiyat performansı açısından en güçlü değişkenin arazi büyüklüğü (0.758) olduğu, bunu kıyıya yakınlık (0.8340) ve yağış miktarı (-5.6223) izlediği belirlenmiştir. Ortalama kare hatası değerlerine göre modelin bazı bölgelerde güvenilir biçimde kullanılabileceği görülmüştür. Anahtar Sözcükler: Arazi fiyatı, mekânsal analiz, regresyon, tarım ekonomisi, coğrafi bilgi sistemleri, LASSO, makine öğrenmesi.
This research basically investigates two dynamics. First, the pricing performance of an agricultural land depending on both internal and regional variables; on the other hand, determining and understanding the strategies to be used in price determination. Among the main findings of the research, the price determination performance was determined as logarithmic variables, the strongest land size (0.758), followed by proximity to the coast (0.8340), and finally rainfall (-5.6223). Based on Mean Square Errors, the research can examine the places where the model is reliable regionally in the future. Keywords: Land Price, Spatial Analysis, Regression, Agricultural Research, Geographic Information Systems, LASSO, Machine Learning, Random Forest.
This research basically investigates two dynamics. First, the pricing performance of an agricultural land depending on both internal and regional variables; on the other hand, determining and understanding the strategies to be used in price determination. Among the main findings of the research, the price determination performance was determined as logarithmic variables, the strongest land size (0.758), followed by proximity to the coast (0.8340), and finally rainfall (-5.6223). Based on Mean Square Errors, the research can examine the places where the model is reliable regionally in the future. Keywords: Land Price, Spatial Analysis, Regression, Agricultural Research, Geographic Information Systems, LASSO, Machine Learning, Random Forest.
Description
Keywords
Ekonometri, Ekonomi, Econometrics, Economics
Turkish CoHE Thesis Center URL
Fields of Science
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
63
Collections
Page Views
5
checked on Dec 06, 2025