Machine Learning Applications for Covid-19 Outbreak Management

dc.contributor.author Heidari, Arash
dc.contributor.author Navimipour, Nima Jafari
dc.contributor.author Unal, Mehmet
dc.contributor.author Toumaj, Shiva
dc.date.accessioned 2023-10-19T15:12:48Z
dc.date.available 2023-10-19T15:12:48Z
dc.date.issued 2022
dc.description.abstract Recently, the COVID-19 epidemic has resulted in millions of deaths and has impacted practically every area of human life. Several machine learning (ML) approaches are employed in the medical field in many applications, including detecting and monitoring patients, notably in COVID-19 management. Different medical imaging systems, such as computed tomography (CT) and X-ray, offer ML an excellent platform for combating the pandemic. Because of this need, a significant quantity of study has been carried out; thus, in this work, we employed a systematic literature review (SLR) to cover all aspects of outcomes from related papers. Imaging methods, survival analysis, forecasting, economic and geographical issues, monitoring methods, medication development, and hybrid apps are the seven key uses of applications employed in the COVID-19 pandemic. Conventional neural networks (CNNs), long short-term memory networks (LSTM), recurrent neural networks (RNNs), generative adversarial networks (GANs), autoencoders, random forest, and other ML techniques are frequently used in such scenarios. Next, cutting-edge applications related to ML techniques for pandemic medical issues are discussed. Various problems and challenges linked with ML applications for this pandemic were reviewed. It is expected that additional research will be conducted in the upcoming to limit the spread and catastrophe management. According to the data, most papers are evaluated mainly on characteristics such as flexibility and accuracy, while other factors such as safety are overlooked. Also, Keras was the most often used library in the research studied, accounting for 24.4 percent of the time. Furthermore, medical imaging systems are employed for diagnostic reasons in 20.4 percent of applications. en_US
dc.identifier.doi 10.1007/s00521-022-07424-w en_US
dc.identifier.issn 0941-0643
dc.identifier.issn 1433-3058
dc.identifier.scopus 2-s2.0-85131558400 en_US
dc.identifier.uri https://doi.org/10.1007/s00521-022-07424-w
dc.identifier.uri https://hdl.handle.net/20.500.12469/5535
dc.language.iso en en_US
dc.publisher Springer London Ltd en_US
dc.relation.ispartof Neural Computing & Applications en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Deep En_Us
dc.subject Model En_Us
dc.subject Images En_Us
dc.subject Machine learning en_US
dc.subject Applications en_US
dc.subject Deep
dc.subject COVID-19 en_US
dc.subject Model
dc.subject Medical imaging en_US
dc.subject Images
dc.subject Outbreak en_US
dc.title Machine Learning Applications for Covid-19 Outbreak Management en_US
dc.type Review en_US
dspace.entity.type Publication
gdc.author.id Jafari Navimipour, Nima/0000-0002-5514-5536
gdc.author.id Heidari, Arash/0000-0003-4279-8551
gdc.author.id Toumaj, Shiva/0000-0002-4828-9427
gdc.author.wosid Jafari Navimipour, Nima/AAF-5662-2021
gdc.author.wosid Heidari, Arash/AAK-9761-2021
gdc.bip.impulseclass C3
gdc.bip.influenceclass C4
gdc.bip.popularityclass C3
gdc.coar.access open access
gdc.coar.type text::review
gdc.collaboration.industrial false
gdc.description.departmenttemp [Heidari, Arash] Islamic Azad Univ, Dept Comp Engn, Tabriz Branch, Tabriz, Iran; [Heidari, Arash] Islamic Azad Univ, Dept Comp Engn, Shabestar Branch, Shabestar, Iran; [Navimipour, Nima Jafari] Kadir Has Univ, Dept Comp Engn, Istanbul, Turkey; [Unal, Mehmet] Nisantasi Univ, Dept Comp Engn, Istanbul, Turkey; [Toumaj, Shiva] Urmia Univ Med Sci, Orumiyeh, Iran en_US
gdc.description.endpage 15348 en_US
gdc.description.issue 18 en_US
gdc.description.publicationcategory Diğer en_US
gdc.description.scopusquality Q1
gdc.description.startpage 15313 en_US
gdc.description.volume 34 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W4281616267
gdc.identifier.pmid 35702664 en_US
gdc.identifier.wos WOS:000809323500001 en_US
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.diamondjournal false
gdc.oaire.impulse 91.0
gdc.oaire.influence 6.558379E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Machine learning
gdc.oaire.keywords Applications
gdc.oaire.keywords Deep
gdc.oaire.keywords Images
gdc.oaire.keywords COVID-19
gdc.oaire.keywords Outbreak
gdc.oaire.keywords Medical imaging
gdc.oaire.keywords Review
gdc.oaire.keywords Model
gdc.oaire.popularity 7.3062495E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration International
gdc.openalex.fwci 30.26367439
gdc.openalex.normalizedpercentile 1.0
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 67
gdc.plumx.crossrefcites 36
gdc.plumx.mendeley 158
gdc.plumx.pubmedcites 23
gdc.plumx.scopuscites 95
gdc.scopus.citedcount 95
gdc.virtual.author Jafari Navimipour, Nima
gdc.wos.citedcount 79
relation.isAuthorOfPublication 0fb3c7a0-c005-4e5f-a9ae-bb163df2df8e
relation.isAuthorOfPublication.latestForDiscovery 0fb3c7a0-c005-4e5f-a9ae-bb163df2df8e
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
5535.pdf
Size:
2.04 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text