The Impact of Text Preprocessing on the Prediction of Review Ratings

dc.contributor.author Işık, Muhittin
dc.contributor.author Dağ, Hasan
dc.contributor.author Dağ, Hasan
dc.contributor.other Management Information Systems
dc.date.accessioned 2020-06-04T17:15:31Z
dc.date.available 2020-06-04T17:15:31Z
dc.date.issued 2020
dc.department Fakülteler, İşletme Fakültesi, Yönetim Bilişim Sistemleri Bölümü en_US
dc.description.abstract With the increase of e-commerce platforms and online applications, businessmen are looking to have a rating and review system through which they can easily reveal the feelings of customers related to their products and services. It is undeniable from the statistics that online ratings and reviews attract new customers as well as increase sales by means of providing confidence, ratification, opinions, comparisons, merchant credibility, etc. Although considerable research has been devoted to the sentiment analysis for review classification, rather less attention has been paid to the text preprocessing which is a crucial step in opinion mining especially if convenient preprocessing strategies are found out to increase the classification accuracy. In this paper, we concentrate on the impact of simple text preprocessing decisions in order to predict fine-grained review rating stars whereas the majority of previous work focused on the binary distinction of positive vs. negative. Therefore, the aim of this research is to analyze preprocessing techniques and their influence, at the same time explain the interesting observations and results on the performance of a five-class-based review rating classifier. en_US
dc.identifier.citationcount 8
dc.identifier.doi 10.3906/elk-1907-46 en_US
dc.identifier.endpage 1421 en_US
dc.identifier.issn 1300-0632 en_US
dc.identifier.issn 1303-6203 en_US
dc.identifier.issn 1300-0632
dc.identifier.issn 1303-6203
dc.identifier.issue 3 en_US
dc.identifier.scopus 2-s2.0-85084540483 en_US
dc.identifier.scopusquality Q3
dc.identifier.startpage 1405 en_US
dc.identifier.trdizinid 338421 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/2882
dc.identifier.uri https://doi.org/10.3906/elk-1907-46
dc.identifier.uri https://search.trdizin.gov.tr/yayin/detay/338421
dc.identifier.volume 28 en_US
dc.identifier.wos WOS:000532359500015 en_US
dc.identifier.wosquality Q4
dc.institutionauthor Daǧ, Hasan en_US
dc.language.iso en en_US
dc.publisher Tubitak en_US
dc.relation.journal Turkish Journal of Electrical Engineering and Computer Sciences en_US
dc.relation.publicationcategory Diğer en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 31
dc.subject Text preprocessing en_US
dc.subject Sentiment analysis en_US
dc.subject Opinion mining en_US
dc.subject Review rating en_US
dc.subject Text mining en_US
dc.title The Impact of Text Preprocessing on the Prediction of Review Ratings en_US
dc.type Working Paper en_US
dc.wos.citedbyCount 14
dspace.entity.type Publication
relation.isAuthorOfPublication e02bc683-b72e-4da4-a5db-ddebeb21e8e7
relation.isAuthorOfPublication.latestForDiscovery e02bc683-b72e-4da4-a5db-ddebeb21e8e7
relation.isOrgUnitOfPublication ff62e329-217b-4857-88f0-1dae00646b8c
relation.isOrgUnitOfPublication.latestForDiscovery ff62e329-217b-4857-88f0-1dae00646b8c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
The impact of text preprocessing on the prediction of review ratings.pdf
Size:
151.7 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: