An evolutionary approach for tuning parametric Esau and Williams heuristics
dc.contributor.author | Battarra, Maria | |
dc.contributor.author | Oncan, Temel | |
dc.contributor.author | Altinel, I. Kuban | |
dc.contributor.author | Golden, Bruce | |
dc.contributor.author | Vigo, Daniele | |
dc.contributor.author | Phillips, E. | |
dc.date.accessioned | 2019-06-27T08:04:09Z | |
dc.date.available | 2019-06-27T08:04:09Z | |
dc.date.issued | 2012 | |
dc.department | Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Endüstri Mühendisliği Bölümü | en_US |
dc.description.abstract | Owing to its inherent difficulty many heuristic solution methods have been proposed for the capacitated minimum spanning tree problem. On the basis of recent developments it is clear that the best metaheuristic implementations outperform classical heuristics. Unfortunately they require long computing times and may not be very easy to implement which explains the popularity of the Esau and Williams heuristic in practice and the motivation behind its enhancements. Some of these enhancements involve parameters and their accuracy becomes nearly competitive with the best metaheuristics when they are tuned properly which is usually done using a grid search within given search intervals for the parameters. In this work we propose a genetic algorithm parameter setting procedure. Computational results show that the new method is even more accurate than an enumerative approach and much more efficient. Journal of the Operational Research Society (2012) 63 368-378. doi:10.1057/jors.2011.36 Published online 1 June 2011 | en_US] |
dc.identifier.citation | 3 | |
dc.identifier.doi | 10.1057/jors.2011.36 | en_US |
dc.identifier.endpage | 378 | |
dc.identifier.issn | 0160-5682 | en_US |
dc.identifier.issn | 1476-9360 | en_US |
dc.identifier.issn | 0160-5682 | |
dc.identifier.issn | 1476-9360 | |
dc.identifier.issue | 3 | |
dc.identifier.scopus | 2-s2.0-84856673896 | en_US |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 368 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12469/898 | |
dc.identifier.uri | https://doi.org/10.1057/jors.2011.36 | |
dc.identifier.volume | 63 | en_US |
dc.identifier.wos | WOS:000300379700007 | en_US |
dc.identifier.wosquality | Q2 | |
dc.institutionauthor | Battarra, Maria | en_US |
dc.language.iso | en | en_US |
dc.publisher | Palgrave Macmillan Ltd. | en_US |
dc.relation.journal | Journal of the Operational Research Society | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Capacitated minimum spanning tree problem | en_US |
dc.subject | Evolutionary algorithms | en_US |
dc.subject | Parameter tuning | en_US |
dc.title | An evolutionary approach for tuning parametric Esau and Williams heuristics | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- An evolutionary approach for tuning parametric Esau and Williams heuristics.pdf
- Size:
- 930.01 KB
- Format:
- Adobe Portable Document Format
- Description: