An Evolutionary Approach for Tuning Parametric Esau and Williams Heuristics

dc.contributor.author Battarra, Maria
dc.contributor.author Oncan, Temel
dc.contributor.author Altinel, I. Kuban
dc.contributor.author Golden, Bruce
dc.contributor.author Vigo, Daniele
dc.contributor.author Phillips, E.
dc.date.accessioned 2019-06-27T08:04:09Z
dc.date.available 2019-06-27T08:04:09Z
dc.date.issued 2012
dc.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Endüstri Mühendisliği Bölümü en_US
dc.description.abstract Owing to its inherent difficulty many heuristic solution methods have been proposed for the capacitated minimum spanning tree problem. On the basis of recent developments it is clear that the best metaheuristic implementations outperform classical heuristics. Unfortunately they require long computing times and may not be very easy to implement which explains the popularity of the Esau and Williams heuristic in practice and the motivation behind its enhancements. Some of these enhancements involve parameters and their accuracy becomes nearly competitive with the best metaheuristics when they are tuned properly which is usually done using a grid search within given search intervals for the parameters. In this work we propose a genetic algorithm parameter setting procedure. Computational results show that the new method is even more accurate than an enumerative approach and much more efficient. Journal of the Operational Research Society (2012) 63 368-378. doi:10.1057/jors.2011.36 Published online 1 June 2011 en_US]
dc.identifier.citationcount 3
dc.identifier.doi 10.1057/jors.2011.36 en_US
dc.identifier.endpage 378
dc.identifier.issn 0160-5682 en_US
dc.identifier.issn 1476-9360 en_US
dc.identifier.issn 0160-5682
dc.identifier.issn 1476-9360
dc.identifier.issue 3
dc.identifier.scopus 2-s2.0-84856673896 en_US
dc.identifier.scopusquality Q1
dc.identifier.startpage 368 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/898
dc.identifier.uri https://doi.org/10.1057/jors.2011.36
dc.identifier.volume 63 en_US
dc.identifier.wos WOS:000300379700007 en_US
dc.identifier.wosquality Q2
dc.institutionauthor Battarra, Maria en_US
dc.language.iso en en_US
dc.publisher Palgrave Macmillan Ltd. en_US
dc.relation.journal Journal of the Operational Research Society en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 4
dc.subject Capacitated minimum spanning tree problem en_US
dc.subject Evolutionary algorithms en_US
dc.subject Parameter tuning en_US
dc.title An Evolutionary Approach for Tuning Parametric Esau and Williams Heuristics en_US
dc.type Article en_US
dc.wos.citedbyCount 3
dspace.entity.type Publication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
An evolutionary approach for tuning parametric Esau and Williams heuristics.pdf
Size:
930.01 KB
Format:
Adobe Portable Document Format
Description: