An evolutionary approach for tuning parametric Esau and Williams heuristics

dc.contributor.authorBattarra, Maria
dc.contributor.authorOncan, Temel
dc.contributor.authorAltinel, I. Kuban
dc.contributor.authorGolden, Bruce
dc.contributor.authorVigo, Daniele
dc.contributor.authorPhillips, E.
dc.date.accessioned2019-06-27T08:04:09Z
dc.date.available2019-06-27T08:04:09Z
dc.date.issued2012
dc.departmentFakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Endüstri Mühendisliği Bölümüen_US
dc.description.abstractOwing to its inherent difficulty many heuristic solution methods have been proposed for the capacitated minimum spanning tree problem. On the basis of recent developments it is clear that the best metaheuristic implementations outperform classical heuristics. Unfortunately they require long computing times and may not be very easy to implement which explains the popularity of the Esau and Williams heuristic in practice and the motivation behind its enhancements. Some of these enhancements involve parameters and their accuracy becomes nearly competitive with the best metaheuristics when they are tuned properly which is usually done using a grid search within given search intervals for the parameters. In this work we propose a genetic algorithm parameter setting procedure. Computational results show that the new method is even more accurate than an enumerative approach and much more efficient. Journal of the Operational Research Society (2012) 63 368-378. doi:10.1057/jors.2011.36 Published online 1 June 2011en_US]
dc.identifier.citation3
dc.identifier.doi10.1057/jors.2011.36en_US
dc.identifier.endpage378
dc.identifier.issn0160-5682en_US
dc.identifier.issn1476-9360en_US
dc.identifier.issn0160-5682
dc.identifier.issn1476-9360
dc.identifier.issue3
dc.identifier.scopus2-s2.0-84856673896en_US
dc.identifier.scopusqualityQ1
dc.identifier.startpage368en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12469/898
dc.identifier.urihttps://doi.org/10.1057/jors.2011.36
dc.identifier.volume63en_US
dc.identifier.wosWOS:000300379700007en_US
dc.identifier.wosqualityQ2
dc.institutionauthorBattarra, Mariaen_US
dc.language.isoenen_US
dc.publisherPalgrave Macmillan Ltd.en_US
dc.relation.journalJournal of the Operational Research Societyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCapacitated minimum spanning tree problemen_US
dc.subjectEvolutionary algorithmsen_US
dc.subjectParameter tuningen_US
dc.titleAn evolutionary approach for tuning parametric Esau and Williams heuristicsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
An evolutionary approach for tuning parametric Esau and Williams heuristics.pdf
Size:
930.01 KB
Format:
Adobe Portable Document Format
Description: