Predicting Attitudinal and Behavioral Responses To Covid-19 Pandemic Using Machine Learning

Loading...
Publication Logo

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Oxford Univ Press

Open Access Color

GOLD

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

Yes
Impulse
Top 10%
Influence
Average
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

At the beginning of 2020, COVID-19 became a global problem. Despite all the efforts to emphasize the relevance of preventive measures, not everyone adhered to them. Thus, learning more about the characteristics determining attitudinal and behavioral responses to the pandemic is crucial to improving future interventions. In this study, we applied machine learning on the multinational data collected by the International Collaboration on the Social and Moral Psychology of COVID-19 (N = 51,404) to test the predictive efficacy of constructs from social, moral, cognitive, and personality psychology, as well as socio-demographic factors, in the attitudinal and behavioral responses to the pandemic. The results point to several valuable insights. Internalized moral identity provided the most consistent predictive contribution-individuals perceiving moral traits as central to their self-concept reported higher adherence to preventive measures. Similar results were found for morality as cooperation, symbolized moral identity, self-control, open-mindedness, and collective narcissism, while the inverse relationship was evident for the endorsement of conspiracy theories. However, we also found a non-neglible variability in the explained variance and predictive contributions with respect to macro-level factors such as the pandemic stage or cultural region. Overall, the results underscore the importance of morality-related and contextual factors in understanding adherence to public health recommendations during the pandemic.

Description

Elbaek, Christian/0000-0002-7039-4565; Findor, Andrej/0000-0002-5896-6989; Wetter, Erik/0000-0002-5821-6651; Tung, Hans H./0000-0001-5332-7582; Pavlović, Zoran/0000-0002-9231-5100; Abts, Koen/0000-0001-8546-8347; Białek, Michał/0000-0002-5062-5733; Gjoneska, Biljana/0000-0003-1200-6672; Sampaio, Waldir M./0000-0002-6066-4314; Frempong, Raymond Boadi/0000-0002-4603-5570; Cutler, Jo/0000-0003-1073-764X; Lockwood, Patricia/0000-0001-7195-9559; cerami, chiara/0000-0003-1974-3421; Ibanez, Agustin/0000-0001-6758-5101; Cockcroft, Kate/0000-0002-6166-8050; von Sikorski, Christian/0000-0002-3787-8277; Longoni, Chiara/0000-0002-4945-4957; Ross, Robert M/0000-0001-8711-1675; Ertan, Arhan S/0000-0001-9730-8391; Paruzel-Czachura, Mariola/0000-0002-8716-9778; Bor, Alexander/0000-0002-2624-9221; Maglić, Marina/0000-0002-6851-4601; Umbres, Radu/0000-0002-6121-4518; Stoica, Catalin Augustin/0000-0003-0585-1114; McHugh, Cillian/0000-0002-9701-3232; Garcia-Navarro, E. Begoña/0000-0001-6913-8882; Cislak, Aleksandra/0000-0002-9880-6947; Vanags, Edmunds/0000-0003-1932-936X; Gaudencio Rêgo, Gabriel/0000-0003-3304-4723; Wohl, Michael/0000-0001-6945-5562; Torgler, Benno/0000-0002-9809-963X; Birtel, Michele Denise/0000-0002-2383-9197; Schoenegger, Philipp/0000-0001-9930-487X; Isler, Ozan/0000-0002-4638-2230; Davis, Victoria/0000-0002-7207-4629; Cordoba, Mateo/0000-0002-2264-7388; Delouvee, Sylvain/0000-0002-4029-597X; Stoyanova, Kristina/0000-0001-8362-6444; Lermer, Eva/0000-0002-6600-9580; Ejaz, Waqas/0000-0002-2492-4115; Hudecek, Matthias F. C./0000-0002-7696-766X; Van Rooy, Dirk/0000-0003-2525-5408; TYRALA, Michael/0000-0001-5268-8319; Farmer, Harry/0000-0002-3684-0605; Petersen, Michael Bang/0000-0002-6782-5635; Jorgensen, Frederik/0000-0002-5461-912X; Zhang, Yucheng/0000-0001-9435-6734; Jangard, Simon/0000-0002-7876-4161; Santamaria Garcia, Hernando/0000-0001-9422-3579; Di Paolo, Roberto/0000-0002-6081-6656; Krouwel, Andre/0000-0003-0952-6028; Nitschke, Jonas/0000-0002-3244-8585; Besharati, Sahba/0000-0003-2836-7982; Marie, Antoine/0000-0002-7958-0153; Chalise, Hom Nath/0000-0002-9301-6890; Walker, Alexander/0000-0003-1431-6770; Alfano, Mark/0000-0001-5879-8033; Palomaki, Jussi/0000-0001-6063-0926; /0000-0002-9495-7369; Parnamets, Philip/0000-0001-8360-9097; Pitman, Michael/0000-0001-5532-5388; Fenwick, Ali/0000-0002-5412-9745; Todosijevic, Bojan/0000-0002-6116-993X; Dulleck, Uwe/0000-0002-0953-5963; Gualda, Estrella/0000-0003-0220-2135; van Prooijen, Jan-Willem/0000-0001-6236-0819; Schmid, Petra/0000-0002-9990-5445

Keywords

COVID-19, social distancing, hygiene, policy support, public health measures, Economics, 150, coronavirus, [SHS.PSY]Humanities and Social Sciences/Psychology, Social Sciences, Fields of Research::42 - Health sciences, Q1, Policy support, hygiene, [STAT.ML]Statistics [stat]/Machine Learning [stat.ML], RA0421, RA0421 Public health. Hygiene. Preventive Medicine, Social Sciences - Other Topics, Psychology, Social and Political Sciences, ta515, 501006 Experimental psychology, social distancing, Hygiene, ta3141, Public health measures, Social Sciences, Interdisciplinary, J, COVID-19; hygiene; policy support; public health measures; social distancing, Multidisciplinary Sciences, machine learning, Fields of Research::46 - Information and computing sciences::4611 - Machine learning, covid-19, SDG 3 – Gesundheit und Wohlergehen, public health measures, 501030 Kognitionswissenschaft, Science & Technology - Other Topics, 5171 Political Science, COVID-19, social distancing, hygiene, policy support, public health measures, Hälso- och sjukvårdsorganisation, hälsopolitik och hälsoekonomi, MORALITY, 501030 Cognitive science, Social distancing, 170, J Political Science, psychology, [SHS.PSY] Humanities and Social Sciences/Psychology, SDG 3 - Good Health and Well-being, Machine learning, OPEN-MINDEDNESS, Nationalekonomi, COVID-19, SOCIAL DISTANCING, HYGIENE, POLICY SUPPORT, PUBLIC HEALTH MEASURES, ESTEEM, MCC, Computer. Automation, ta113, Science & Technology, Psykologi (exklusive tillämpad psykologi), HM Sociology / társadalomkutatás, 501006 Experimentalpsychologie, COVID-19, DAS, Health Care Service and Management, Health Policy and Services and Health Economy, policy support, [SHS.SCIPO]Humanities and Social Sciences/Political science, [STAT.ML] Statistics [stat]/Machine Learning [stat.ML], SELF-CONTROL, Psychology (excluding Applied Psychology), ta1181, Human medicine, [SHS.SCIPO] Humanities and Social Sciences/Political science, Fields of Research::52 - Psychology, SINGLE-ITEM MEASURE, COVID-19; hygiene; policy support; public health measures; social distancing;

Fields of Science

05 social sciences, 0501 psychology and cognitive sciences

Citation

WoS Q

Q1

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
23

Source

PNAS Nexus

Volume

1

Issue

3

Start Page

End Page

PlumX Metrics
Citations

PubMed : 20

Captures

Mendeley Readers : 107

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
11.36537693

Sustainable Development Goals