Predicting Attitudinal and Behavioral Responses To Covid-19 Pandemic Using Machine Learning
Loading...

Date
2022
Journal Title
Journal ISSN
Volume Title
Publisher
Oxford Univ Press
Open Access Color
GOLD
Green Open Access
Yes
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
Yes
Abstract
At the beginning of 2020, COVID-19 became a global problem. Despite all the efforts to emphasize the relevance of preventive measures, not everyone adhered to them. Thus, learning more about the characteristics determining attitudinal and behavioral responses to the pandemic is crucial to improving future interventions. In this study, we applied machine learning on the multinational data collected by the International Collaboration on the Social and Moral Psychology of COVID-19 (N = 51,404) to test the predictive efficacy of constructs from social, moral, cognitive, and personality psychology, as well as socio-demographic factors, in the attitudinal and behavioral responses to the pandemic. The results point to several valuable insights. Internalized moral identity provided the most consistent predictive contribution-individuals perceiving moral traits as central to their self-concept reported higher adherence to preventive measures. Similar results were found for morality as cooperation, symbolized moral identity, self-control, open-mindedness, and collective narcissism, while the inverse relationship was evident for the endorsement of conspiracy theories. However, we also found a non-neglible variability in the explained variance and predictive contributions with respect to macro-level factors such as the pandemic stage or cultural region. Overall, the results underscore the importance of morality-related and contextual factors in understanding adherence to public health recommendations during the pandemic.
Description
Elbaek, Christian/0000-0002-7039-4565; Findor, Andrej/0000-0002-5896-6989; Wetter, Erik/0000-0002-5821-6651; Tung, Hans H./0000-0001-5332-7582; Pavlović, Zoran/0000-0002-9231-5100; Abts, Koen/0000-0001-8546-8347; Białek, Michał/0000-0002-5062-5733; Gjoneska, Biljana/0000-0003-1200-6672; Sampaio, Waldir M./0000-0002-6066-4314; Frempong, Raymond Boadi/0000-0002-4603-5570; Cutler, Jo/0000-0003-1073-764X; Lockwood, Patricia/0000-0001-7195-9559; cerami, chiara/0000-0003-1974-3421; Ibanez, Agustin/0000-0001-6758-5101; Cockcroft, Kate/0000-0002-6166-8050; von Sikorski, Christian/0000-0002-3787-8277; Longoni, Chiara/0000-0002-4945-4957; Ross, Robert M/0000-0001-8711-1675; Ertan, Arhan S/0000-0001-9730-8391; Paruzel-Czachura, Mariola/0000-0002-8716-9778; Bor, Alexander/0000-0002-2624-9221; Maglić, Marina/0000-0002-6851-4601; Umbres, Radu/0000-0002-6121-4518; Stoica, Catalin Augustin/0000-0003-0585-1114; McHugh, Cillian/0000-0002-9701-3232; Garcia-Navarro, E. Begoña/0000-0001-6913-8882; Cislak, Aleksandra/0000-0002-9880-6947; Vanags, Edmunds/0000-0003-1932-936X; Gaudencio Rêgo, Gabriel/0000-0003-3304-4723; Wohl, Michael/0000-0001-6945-5562; Torgler, Benno/0000-0002-9809-963X; Birtel, Michele Denise/0000-0002-2383-9197; Schoenegger, Philipp/0000-0001-9930-487X; Isler, Ozan/0000-0002-4638-2230; Davis, Victoria/0000-0002-7207-4629; Cordoba, Mateo/0000-0002-2264-7388; Delouvee, Sylvain/0000-0002-4029-597X; Stoyanova, Kristina/0000-0001-8362-6444; Lermer, Eva/0000-0002-6600-9580; Ejaz, Waqas/0000-0002-2492-4115; Hudecek, Matthias F. C./0000-0002-7696-766X; Van Rooy, Dirk/0000-0003-2525-5408; TYRALA, Michael/0000-0001-5268-8319; Farmer, Harry/0000-0002-3684-0605; Petersen, Michael Bang/0000-0002-6782-5635; Jorgensen, Frederik/0000-0002-5461-912X; Zhang, Yucheng/0000-0001-9435-6734; Jangard, Simon/0000-0002-7876-4161; Santamaria Garcia, Hernando/0000-0001-9422-3579; Di Paolo, Roberto/0000-0002-6081-6656; Krouwel, Andre/0000-0003-0952-6028; Nitschke, Jonas/0000-0002-3244-8585; Besharati, Sahba/0000-0003-2836-7982; Marie, Antoine/0000-0002-7958-0153; Chalise, Hom Nath/0000-0002-9301-6890; Walker, Alexander/0000-0003-1431-6770; Alfano, Mark/0000-0001-5879-8033; Palomaki, Jussi/0000-0001-6063-0926; /0000-0002-9495-7369; Parnamets, Philip/0000-0001-8360-9097; Pitman, Michael/0000-0001-5532-5388; Fenwick, Ali/0000-0002-5412-9745; Todosijevic, Bojan/0000-0002-6116-993X; Dulleck, Uwe/0000-0002-0953-5963; Gualda, Estrella/0000-0003-0220-2135; van Prooijen, Jan-Willem/0000-0001-6236-0819; Schmid, Petra/0000-0002-9990-5445
Keywords
COVID-19, social distancing, hygiene, policy support, public health measures, Economics, 150, coronavirus, [SHS.PSY]Humanities and Social Sciences/Psychology, Social Sciences, Fields of Research::42 - Health sciences, Q1, Policy support, hygiene, [STAT.ML]Statistics [stat]/Machine Learning [stat.ML], RA0421, RA0421 Public health. Hygiene. Preventive Medicine, Social Sciences - Other Topics, Psychology, Social and Political Sciences, ta515, 501006 Experimental psychology, social distancing, Hygiene, ta3141, Public health measures, Social Sciences, Interdisciplinary, J, COVID-19; hygiene; policy support; public health measures; social distancing, Multidisciplinary Sciences, machine learning, Fields of Research::46 - Information and computing sciences::4611 - Machine learning, covid-19, SDG 3 – Gesundheit und Wohlergehen, public health measures, 501030 Kognitionswissenschaft, Science & Technology - Other Topics, 5171 Political Science, COVID-19, social distancing, hygiene, policy support, public health measures, Hälso- och sjukvårdsorganisation, hälsopolitik och hälsoekonomi, MORALITY, 501030 Cognitive science, Social distancing, 170, J Political Science, psychology, [SHS.PSY] Humanities and Social Sciences/Psychology, SDG 3 - Good Health and Well-being, Machine learning, OPEN-MINDEDNESS, Nationalekonomi, COVID-19, SOCIAL DISTANCING, HYGIENE, POLICY SUPPORT, PUBLIC HEALTH MEASURES, ESTEEM, MCC, Computer. Automation, ta113, Science & Technology, Psykologi (exklusive tillämpad psykologi), HM Sociology / társadalomkutatás, 501006 Experimentalpsychologie, COVID-19, DAS, Health Care Service and Management, Health Policy and Services and Health Economy, policy support, [SHS.SCIPO]Humanities and Social Sciences/Political science, [STAT.ML] Statistics [stat]/Machine Learning [stat.ML], SELF-CONTROL, Psychology (excluding Applied Psychology), ta1181, Human medicine, [SHS.SCIPO] Humanities and Social Sciences/Political science, Fields of Research::52 - Psychology, SINGLE-ITEM MEASURE, COVID-19; hygiene; policy support; public health measures; social distancing;
Fields of Science
05 social sciences, 0501 psychology and cognitive sciences
Citation
WoS Q
Q1
Scopus Q
Q1

OpenCitations Citation Count
23
Source
PNAS Nexus
Volume
1
Issue
3
Start Page
End Page
PlumX Metrics
Citations
PubMed : 20
Captures
Mendeley Readers : 107
Google Scholar™


