An Equivalence Class Decomposition of Finite Metric Spaces Via Gromov Products
| gdc.relation.journal | Discrete Mathematics | en_US |
| dc.contributor.author | Bilge, Ayşe Hümeyra | |
| dc.contributor.author | Çelik, Derya | |
| dc.contributor.author | Koçak, Şahin | |
| dc.date.accessioned | 2020-12-22T20:15:24Z | |
| dc.date.available | 2020-12-22T20:15:24Z | |
| dc.date.issued | 2017 | |
| dc.description.abstract | Let (X, d) be a finite metric space with elements P-i, i = 1,..., n and with the distance functions d(ij) The Gromov Product of the "triangle" (P-i, P-j, P-k) with vertices P-t, P-j and P-k at the vertex Pi is defined by Delta(ijk) = 1/2(d(ij) + d(ik) - d(jk)). We show that the collection of Gromov products determines the metric. We call a metric space Delta-generic, if the set of all Gromov products at a fixed vertex P-i has a unique smallest element (for i = 1,., n). We consider the function assigning to each vertex P-i the edge {P-i, P-k} of the triangle (P-i, P-j, P-k) realizing the minimal Gromov product at P-i and we call this function the Gromov product structure of the metric space (X, d). We say two Delta-generic metric spaces (X, d) and (X, d') to be Gromov product equivalent, if the corresponding Gromov product structures are the same up to a permutation of X. For n = 3, 4 there is one (Delta-generic) Gromov equivalence class and for n = 5 there are three (Delta-generic) Gromov equivalence classes. For n = 6 we show by computer that there are 26 distinct (Delta-generic) Gromov equivalence classes. (C) 2017 Elsevier B.V. All rights reserved. | en_US |
| dc.identifier.citationcount | 2 | |
| dc.identifier.doi | 10.1016/j.disc.2017.03.023 | en_US |
| dc.identifier.issn | 0012-365X | en_US |
| dc.identifier.issn | 1872-681X | en_US |
| dc.identifier.issn | 0012-365X | |
| dc.identifier.issn | 1872-681X | |
| dc.identifier.scopus | 2-s2.0-85018902568 | en_US |
| dc.identifier.uri | https://hdl.handle.net/20.500.12469/3625 | |
| dc.identifier.uri | https://doi.org/10.1016/j.disc.2017.03.023 | |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier Science Bv | en_US |
| dc.relation.ispartof | Discrete Mathematics | |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Finite metric spaces | en_US |
| dc.subject | Gromov product | en_US |
| dc.subject | Weighted graphs | en_US |
| dc.title | An Equivalence Class Decomposition of Finite Metric Spaces Via Gromov Products | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Bilge, Ayşe Hümeyra | en_US |
| gdc.author.institutional | Bilge, Ayşe Hümeyra | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C4 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Endüstri Mühendisliği Bölümü | en_US |
| gdc.description.endpage | 1932 | en_US |
| gdc.description.issue | 8 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 1928 | en_US |
| gdc.description.volume | 340 | en_US |
| gdc.description.wosquality | Q3 | |
| gdc.identifier.openalex | W2609341293 | |
| gdc.identifier.wos | WOS:000402211100016 | en_US |
| gdc.oaire.accesstype | HYBRID | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 2.0 | |
| gdc.oaire.influence | 4.231888E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Finite metric spaces | |
| gdc.oaire.keywords | Gromov product | |
| gdc.oaire.keywords | Weighted Graphs | |
| gdc.oaire.keywords | Weighted graphs | |
| gdc.oaire.keywords | Gromov Product | |
| gdc.oaire.keywords | Finite Metric Spaces | |
| gdc.oaire.popularity | 3.3461052E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0102 computer and information sciences | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.fwci | 0.832 | |
| gdc.openalex.normalizedpercentile | 0.73 | |
| gdc.opencitations.count | 5 | |
| gdc.plumx.crossrefcites | 3 | |
| gdc.plumx.mendeley | 2 | |
| gdc.plumx.scopuscites | 3 | |
| gdc.scopus.citedcount | 3 | |
| gdc.wos.citedcount | 3 | |
| relation.isAuthorOfPublication | 1b50a6b2-7290-44da-b8d5-f048fea8b315 | |
| relation.isAuthorOfPublication.latestForDiscovery | 1b50a6b2-7290-44da-b8d5-f048fea8b315 | |
| relation.isOrgUnitOfPublication | 28868d0c-e9a4-4de1-822f-c8df06d2086a | |
| relation.isOrgUnitOfPublication | 2457b9b3-3a3f-4c17-8674-7f874f030d96 | |
| relation.isOrgUnitOfPublication | b20623fc-1264-4244-9847-a4729ca7508c | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 28868d0c-e9a4-4de1-822f-c8df06d2086a |