An Equivalence Class Decomposition of Finite Metric Spaces Via Gromov Products

dc.contributor.author Bilge, Ayşe Hümeyra
dc.contributor.author Bilge, Ayşe Hümeyra
dc.contributor.author Çelik, Derya
dc.contributor.author Koçak, Şahin
dc.contributor.other Industrial Engineering
dc.date.accessioned 2020-12-22T20:15:24Z
dc.date.available 2020-12-22T20:15:24Z
dc.date.issued 2017
dc.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Endüstri Mühendisliği Bölümü en_US
dc.description.abstract Let (X, d) be a finite metric space with elements P-i, i = 1,..., n and with the distance functions d(ij) The Gromov Product of the "triangle" (P-i, P-j, P-k) with vertices P-t, P-j and P-k at the vertex Pi is defined by Delta(ijk) = 1/2(d(ij) + d(ik) - d(jk)). We show that the collection of Gromov products determines the metric. We call a metric space Delta-generic, if the set of all Gromov products at a fixed vertex P-i has a unique smallest element (for i = 1,., n). We consider the function assigning to each vertex P-i the edge {P-i, P-k} of the triangle (P-i, P-j, P-k) realizing the minimal Gromov product at P-i and we call this function the Gromov product structure of the metric space (X, d). We say two Delta-generic metric spaces (X, d) and (X, d') to be Gromov product equivalent, if the corresponding Gromov product structures are the same up to a permutation of X. For n = 3, 4 there is one (Delta-generic) Gromov equivalence class and for n = 5 there are three (Delta-generic) Gromov equivalence classes. For n = 6 we show by computer that there are 26 distinct (Delta-generic) Gromov equivalence classes. (C) 2017 Elsevier B.V. All rights reserved. en_US
dc.identifier.citationcount 2
dc.identifier.doi 10.1016/j.disc.2017.03.023 en_US
dc.identifier.endpage 1932 en_US
dc.identifier.issn 0012-365X en_US
dc.identifier.issn 1872-681X en_US
dc.identifier.issn 0012-365X
dc.identifier.issn 1872-681X
dc.identifier.issue 8 en_US
dc.identifier.scopus 2-s2.0-85018902568 en_US
dc.identifier.scopusquality Q1
dc.identifier.startpage 1928 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/3625
dc.identifier.uri https://doi.org/10.1016/j.disc.2017.03.023
dc.identifier.volume 340 en_US
dc.identifier.wos WOS:000402211100016 en_US
dc.identifier.wosquality Q3
dc.institutionauthor Bilge, Ayşe Hümeyra en_US
dc.language.iso en en_US
dc.publisher Elsevier Science Bv en_US
dc.relation.journal Discrete Mathematics en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 3
dc.subject Finite metric spaces en_US
dc.subject Gromov product en_US
dc.subject Weighted graphs en_US
dc.title An Equivalence Class Decomposition of Finite Metric Spaces Via Gromov Products en_US
dc.type Article en_US
dc.wos.citedbyCount 3
dspace.entity.type Publication
relation.isAuthorOfPublication 1b50a6b2-7290-44da-b8d5-f048fea8b315
relation.isAuthorOfPublication.latestForDiscovery 1b50a6b2-7290-44da-b8d5-f048fea8b315
relation.isOrgUnitOfPublication 28868d0c-e9a4-4de1-822f-c8df06d2086a
relation.isOrgUnitOfPublication.latestForDiscovery 28868d0c-e9a4-4de1-822f-c8df06d2086a

Files