An Equivalence Class Decomposition of Finite Metric Spaces Via Gromov Products

dc.contributor.author Bilge, Ayşe Hümeyra
dc.contributor.author Çelik, Derya
dc.contributor.author Koçak, Şahin
dc.date.accessioned 2020-12-22T20:15:24Z
dc.date.available 2020-12-22T20:15:24Z
dc.date.issued 2017
dc.description.abstract Let (X, d) be a finite metric space with elements P-i, i = 1,..., n and with the distance functions d(ij) The Gromov Product of the "triangle" (P-i, P-j, P-k) with vertices P-t, P-j and P-k at the vertex Pi is defined by Delta(ijk) = 1/2(d(ij) + d(ik) - d(jk)). We show that the collection of Gromov products determines the metric. We call a metric space Delta-generic, if the set of all Gromov products at a fixed vertex P-i has a unique smallest element (for i = 1,., n). We consider the function assigning to each vertex P-i the edge {P-i, P-k} of the triangle (P-i, P-j, P-k) realizing the minimal Gromov product at P-i and we call this function the Gromov product structure of the metric space (X, d). We say two Delta-generic metric spaces (X, d) and (X, d') to be Gromov product equivalent, if the corresponding Gromov product structures are the same up to a permutation of X. For n = 3, 4 there is one (Delta-generic) Gromov equivalence class and for n = 5 there are three (Delta-generic) Gromov equivalence classes. For n = 6 we show by computer that there are 26 distinct (Delta-generic) Gromov equivalence classes. (C) 2017 Elsevier B.V. All rights reserved. en_US
dc.identifier.doi 10.1016/j.disc.2017.03.023 en_US
dc.identifier.issn 0012-365X en_US
dc.identifier.issn 1872-681X en_US
dc.identifier.issn 0012-365X
dc.identifier.issn 1872-681X
dc.identifier.scopus 2-s2.0-85018902568 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/3625
dc.identifier.uri https://doi.org/10.1016/j.disc.2017.03.023
dc.language.iso en en_US
dc.publisher Elsevier Science Bv en_US
dc.relation.ispartof Discrete Mathematics
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Finite metric spaces en_US
dc.subject Gromov product en_US
dc.subject Weighted graphs en_US
dc.title An Equivalence Class Decomposition of Finite Metric Spaces Via Gromov Products en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Bilge, Ayşe Hümeyra en_US
gdc.bip.impulseclass C5
gdc.bip.influenceclass C4
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Endüstri Mühendisliği Bölümü en_US
gdc.description.endpage 1932 en_US
gdc.description.issue 8 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q4
gdc.description.startpage 1928 en_US
gdc.description.volume 340 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W2609341293
gdc.identifier.wos WOS:000402211100016 en_US
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.impulse 2.0
gdc.oaire.influence 4.060115E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Finite metric spaces
gdc.oaire.keywords Gromov product
gdc.oaire.keywords Weighted Graphs
gdc.oaire.keywords Weighted graphs
gdc.oaire.keywords Gromov Product
gdc.oaire.keywords Finite Metric Spaces
gdc.oaire.keywords Graph operations (line graphs, products, etc.)
gdc.oaire.keywords finite metric spaces
gdc.oaire.keywords Signed and weighted graphs
gdc.oaire.keywords weighted graphs
gdc.oaire.popularity 3.6046806E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0102 computer and information sciences
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration National
gdc.openalex.fwci 1.86121681
gdc.openalex.normalizedpercentile 0.82
gdc.opencitations.count 5
gdc.plumx.crossrefcites 3
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 3
gdc.relation.journal Discrete Mathematics
gdc.scopus.citedcount 3
gdc.virtual.author Bilge, Ayşe Hümeyra
gdc.wos.citedcount 3
relation.isAuthorOfPublication 1b50a6b2-7290-44da-b8d5-f048fea8b315
relation.isAuthorOfPublication.latestForDiscovery 1b50a6b2-7290-44da-b8d5-f048fea8b315
relation.isOrgUnitOfPublication 28868d0c-e9a4-4de1-822f-c8df06d2086a
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery 28868d0c-e9a4-4de1-822f-c8df06d2086a

Files