Performance of Cellular Neural Network Based Channel Equalizers

dc.contributor.authorOzmen, Atilla
dc.contributor.authorEnol, H. S
dc.contributor.authorTander, B.
dc.date.accessioned2023-10-19T14:55:51Z
dc.date.available2023-10-19T14:55:51Z
dc.date.issued2020
dc.department-tempKadir Has Üniversitesi, Elektrik Elektronik Mühendisliği Bölümü, İstanbul, Türkiye -- Kadir Has Üniversitesi, Bilgisayar Mühendisliği Bölümü, İstanbul, Türkiye -- Kadir Has Üniversitesi, Mekatronik Mühendisliği Bölümü, İstanbul, Türkiyeen_US
dc.description.abstractAbstract—In this paper, a popular dynamic neural network structure called Cellular Neural Network (CNN) is employed as a channel equalizer in digital communications. It is shown that, this nonlinear system is capable of suppressing the effect of intersymbol interference (ISI) and the noise at the channel. The architecture is a small-scaled, simple neural network containing only 25 neurons (cells) with a neighborhood of r = 2 , thus including only 51 weight coefficients. Furthermore, a special technique called repetitive codes in equalization process is also applied to the mentioned CNN based system to show that the two-dimensional structure of CNN is capable of processing such signals, where performance improvement is observed. Simula-tions are carried out to compare the proposed structures with minimum mean square error (MMSE) and multilayer perceptron (MLP) based equalizers.en_US
dc.identifier.citation0
dc.identifier.doi10.17694/bajece.519464
dc.identifier.endpage6en_US
dc.identifier.issn2147-284X
dc.identifier.issue1en_US
dc.identifier.startpage1en_US
dc.identifier.trdizinid467669en_US].
dc.identifier.trdizinid467669en_US]
dc.identifier.urihttps://doi.org/10.17694/bajece.519464
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/467669
dc.identifier.urihttps://hdl.handle.net/20.500.12469/4579
dc.identifier.volume8en_US
dc.institutionauthorÖzmen, Atilla
dc.language.isoenen_US
dc.relation.ispartofBalkan Journal of Electrical and Computer Engineeringen_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titlePerformance of Cellular Neural Network Based Channel Equalizersen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationcf8f9e05-3f89-4ab6-af78-d0937210fb77
relation.isAuthorOfPublication.latestForDiscoverycf8f9e05-3f89-4ab6-af78-d0937210fb77

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
4579.pdf
Size:
1.46 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text