Performance of Cellular Neural Network Based Channel Equalizers

dc.contributor.author Ozmen, Atilla
dc.contributor.author Özmen, Atilla
dc.contributor.author Enol, H. S
dc.contributor.author Tander, B.
dc.contributor.other Electrical-Electronics Engineering
dc.date.accessioned 2023-10-19T14:55:51Z
dc.date.available 2023-10-19T14:55:51Z
dc.date.issued 2020
dc.department-temp Kadir Has Üniversitesi, Elektrik Elektronik Mühendisliği Bölümü, İstanbul, Türkiye -- Kadir Has Üniversitesi, Bilgisayar Mühendisliği Bölümü, İstanbul, Türkiye -- Kadir Has Üniversitesi, Mekatronik Mühendisliği Bölümü, İstanbul, Türkiye en_US
dc.description.abstract Abstract—In this paper, a popular dynamic neural network structure called Cellular Neural Network (CNN) is employed as a channel equalizer in digital communications. It is shown that, this nonlinear system is capable of suppressing the effect of intersymbol interference (ISI) and the noise at the channel. The architecture is a small-scaled, simple neural network containing only 25 neurons (cells) with a neighborhood of r = 2 , thus including only 51 weight coefficients. Furthermore, a special technique called repetitive codes in equalization process is also applied to the mentioned CNN based system to show that the two-dimensional structure of CNN is capable of processing such signals, where performance improvement is observed. Simula-tions are carried out to compare the proposed structures with minimum mean square error (MMSE) and multilayer perceptron (MLP) based equalizers. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.17694/bajece.519464
dc.identifier.endpage 6 en_US
dc.identifier.issn 2147-284X
dc.identifier.issue 1 en_US
dc.identifier.startpage 1 en_US
dc.identifier.trdizinid 467669 en_US].
dc.identifier.trdizinid 467669 en_US]
dc.identifier.uri https://doi.org/10.17694/bajece.519464
dc.identifier.uri https://search.trdizin.gov.tr/yayin/detay/467669
dc.identifier.uri https://hdl.handle.net/20.500.12469/4579
dc.identifier.volume 8 en_US
dc.language.iso en en_US
dc.relation.ispartof Balkan Journal of Electrical and Computer Engineering en_US
dc.relation.publicationcategory Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.title Performance of Cellular Neural Network Based Channel Equalizers en_US
dc.type Article en_US
dspace.entity.type Publication
relation.isAuthorOfPublication cf8f9e05-3f89-4ab6-af78-d0937210fb77
relation.isAuthorOfPublication.latestForDiscovery cf8f9e05-3f89-4ab6-af78-d0937210fb77
relation.isOrgUnitOfPublication 12b0068e-33e6-48db-b92a-a213070c3a8d
relation.isOrgUnitOfPublication.latestForDiscovery 12b0068e-33e6-48db-b92a-a213070c3a8d

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
4579.pdf
Size:
1.46 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text