Assortment Optimization With Log-Linear Demand: Application at a Turkish Grocery Store
| gdc.relation.journal | Journal of Retailing and Consumer Services | en_US |
| dc.contributor.author | Hekimoğlu, Mustafa | |
| dc.contributor.author | Sevim, İsmail | |
| dc.contributor.author | Aksezer, Çağlar Sezgin | |
| dc.contributor.author | Durmuş, İpek | |
| dc.contributor.other | Industrial Engineering | |
| dc.contributor.other | 05. Faculty of Engineering and Natural Sciences | |
| dc.contributor.other | 01. Kadir Has University | |
| dc.date.accessioned | 2019-06-28T11:10:41Z | |
| dc.date.available | 2019-06-28T11:10:41Z | |
| dc.date.issued | 2019 | |
| dc.description.abstract | In retail sector product variety increases faster than shelf spaces of retail stores where goods are presented to consumers. Hence assortment planning is an important task for sustained financial success of a retailer in a competitive business environment. In this study we consider the assortment planning problem of a retailer in Turkey. Using empirical point-of-sale data a demand model is developed and utilized in the optimization model. Due to nonlinear nature of the model and integrality constraint we find that it is difficult to obtain a solution even for moderately large product sets. We propose a greedy heuristic approach that generates better results than the mixed integer nonlinear programming in a reasonably shorter period of time for medium and large problem sizes. We also proved that our method has a worst-case time complexity of O(n 2 )while other two well-known heuristics’ complexities are O(n 3 )and O(n 4 ). Also numerical experiments reveal that our method has a better performance than the worst-case as it generates better results in a much shorter run-times compared to other methods. © 2019 Elsevier Ltd | en_US] |
| dc.identifier.citationcount | 5 | |
| dc.identifier.doi | 10.1016/j.jretconser.2019.04.007 | en_US |
| dc.identifier.issn | 0969-6989 | en_US |
| dc.identifier.issn | 0969-6989 | |
| dc.identifier.scopus | 2-s2.0-85065862389 | en_US |
| dc.identifier.uri | https://hdl.handle.net/20.500.12469/1249 | |
| dc.identifier.uri | https://doi.org/10.1016/j.jretconser.2019.04.007 | |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier | en_US |
| dc.relation.ispartof | Journal of Retailing and Consumer Services | |
| dc.rights | info:eu-repo/semantics/embargoedAccess | en_US |
| dc.title | Assortment Optimization With Log-Linear Demand: Application at a Turkish Grocery Store | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Hekimoğlu, Mustafa | en_US |
| gdc.author.institutional | Hekimoğlu, Mustafa | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | embargoed access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Endüstri Mühendisliği Bölümü | en_US |
| gdc.description.endpage | 214 | |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 199 | en_US |
| gdc.description.volume | 50 | en_US |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W2945458862 | |
| gdc.identifier.wos | WOS:000471928200023 | en_US |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 3.0 | |
| gdc.oaire.influence | 3.084412E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Optimal-Algorithms | |
| gdc.oaire.keywords | Genetic Algorithm | |
| gdc.oaire.keywords | Methodology | |
| gdc.oaire.keywords | Retail assortment | |
| gdc.oaire.keywords | Price | |
| gdc.oaire.keywords | Genetic algorithm | |
| gdc.oaire.keywords | N/A | |
| gdc.oaire.keywords | Products | |
| gdc.oaire.keywords | Substitution | |
| gdc.oaire.keywords | Model | |
| gdc.oaire.popularity | 6.249337E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 05 social sciences | |
| gdc.oaire.sciencefields | 0211 other engineering and technologies | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.oaire.sciencefields | 0502 economics and business | |
| gdc.openalex.fwci | 1.137 | |
| gdc.openalex.normalizedpercentile | 0.94 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 5 | |
| gdc.plumx.mendeley | 56 | |
| gdc.plumx.scopuscites | 7 | |
| gdc.scopus.citedcount | 7 | |
| gdc.wos.citedcount | 6 | |
| relation.isAuthorOfPublication | 533132ce-5631-4068-91c5-2806df0f65bb | |
| relation.isAuthorOfPublication.latestForDiscovery | 533132ce-5631-4068-91c5-2806df0f65bb | |
| relation.isOrgUnitOfPublication | 28868d0c-e9a4-4de1-822f-c8df06d2086a | |
| relation.isOrgUnitOfPublication | 2457b9b3-3a3f-4c17-8674-7f874f030d96 | |
| relation.isOrgUnitOfPublication | b20623fc-1264-4244-9847-a4729ca7508c | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 28868d0c-e9a4-4de1-822f-c8df06d2086a |