Steady-State Entanglement Generation Via Casimir-Polder Interactions

No Thumbnail Available

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

Nature Portfolio

Open Access Color

HYBRID

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

We investigate the generation of steady-state entanglement between two atoms resulting from the fluctuation-mediated Casimir-Polder (CP) interactions near a surface. Starting with an initially separable state of the atoms, we analyze the atom-atom entanglement dynamics for atoms placed at distances in the range of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 25$$\end{document} nm away from a planar medium, examining the effect of medium properties and geometrical configuration of the atomic dipoles. We show that perfectly conducting and superconducting surfaces yield an optimal steady-state concurrence value of approximately 0.5. Furthermore, although the generated entanglement decreases with medium losses for a metal surface, we identify an optimal distance from the metal surface that assists in entanglement generation by the surface. While fluctuation-mediated interactions are typically considered detrimental to the coherence of quantum systems at nanoscales, our results demonstrate a mechanism for leveraging such interactions for entanglement generation.

Description

Keywords

Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph), Article

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q1

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

Scientific Reports

Volume

15

Issue

1

Start Page

End Page

PlumX Metrics
Citations

Scopus : 0

Web of Science™ Citations

1

checked on Feb 06, 2026

Page Views

7

checked on Feb 06, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
3.44228308

Sustainable Development Goals

SDG data is not available