Sipan: Simultaneous Prediction and Alignment of Protein-Protein Interaction Networks

gdc.relation.journal Bioinformatics en_US
dc.contributor.author Alkan, Ferhat
dc.contributor.author Erten, Cesim
dc.date.accessioned 2019-06-27T08:02:14Z
dc.date.available 2019-06-27T08:02:14Z
dc.date.issued 2015
dc.description.abstract Motivation: Network prediction as applied to protein-protein interaction (PPI) networks has received considerable attention within the last decade. Because of the limitations of experimental techniques for interaction detection and network construction several computational methods for PPI network reconstruction and growth have been suggested. Such methods usually limit the scope of study to a single network employing data based on genomic context structure domain sequence information or existing network topology. Incorporating multiple species network data for network reconstruction and growth entails the design of novel models encompassing both network reconstruction and network alignment since the goal of network alignment is to provide functionally orthologous proteins from multiple networks and such orthology information can be used in guiding interolog transfers. However such an approach raises the classical chicken or egg problem en_US]
dc.description.abstract alignment methods assume error-free networks whereas network prediction via orthology works affectively if the functionally orthologous proteins are determined with high precision. Thus to resolve this intertwinement we propose a framework to handle both problems simultaneously that of SImultaneous Prediction and Alignment of Networks (SiPAN). Results: We present an algorithm that solves the SiPAN problem in accordance with its simultaneous nature. Bearing the same name as the defined problem itself the SiPAN algorithm employs state-of-the-art alignment and topology-based interaction confidence construction algorithms which are used as benchmark methods for comparison purposes as well. To demonstrate the effectiveness of the proposed network reconstruction via SiPAN we consider two scenarios en_US]
dc.description.abstract one that preserves the network sizes and the other where the network sizes are increased. Through extensive tests on real-world biological data we show that the network qualities of SiPAN reconstructions are as good as those of original networks and in some cases SiPAN networks are even better especially for the former scenario. An alternative state-of-the-art network reconstruction algorithm random walk with resistance produces networks considerably worse than the original networks and those reproduced via SiPAN in both cases. en_US]
dc.identifier.citationcount 9
dc.identifier.doi 10.1093/bioinformatics/btv160 en_US
dc.identifier.issn 1367-4803 en_US
dc.identifier.issn 1460-2059 en_US
dc.identifier.issn 1367-4803
dc.identifier.issn 1460-2059
dc.identifier.issn 1367-4811
dc.identifier.scopus 2-s2.0-84941662048 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/580
dc.identifier.uri https://doi.org/10.1093/bioinformatics/btv160
dc.language.iso en en_US
dc.publisher Oxford University Press en_US
dc.relation.ispartof Bioinformatics
dc.rights info:eu-repo/semantics/openAccess en_US
dc.title Sipan: Simultaneous Prediction and Alignment of Protein-Protein Interaction Networks en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Erten, Cesim en_US
gdc.author.institutional Erten, Cesim
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
gdc.description.endpage 2363
gdc.description.issue 14
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 2356 en_US
gdc.description.volume 31 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W2107790837
gdc.identifier.pmid 25788620 en_US
gdc.identifier.wos WOS:000358173500016 en_US
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 3.0
gdc.oaire.influence 2.9832823E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Computational Biology
gdc.oaire.keywords Proteins
gdc.oaire.keywords Models, Biological
gdc.oaire.keywords N/A
gdc.oaire.keywords Sequence Analysis, Protein
gdc.oaire.keywords Protein Interaction Mapping
gdc.oaire.keywords Humans
gdc.oaire.keywords Protein Interaction Maps
gdc.oaire.keywords Algorithms
gdc.oaire.popularity 4.846628E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0301 basic medicine
gdc.oaire.sciencefields 0206 medical engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 03 medical and health sciences
gdc.openalex.fwci 0.38
gdc.openalex.normalizedpercentile 0.63
gdc.opencitations.count 10
gdc.plumx.crossrefcites 8
gdc.plumx.mendeley 33
gdc.plumx.pubmedcites 4
gdc.plumx.scopuscites 11
gdc.scopus.citedcount 11
gdc.wos.citedcount 9
relation.isAuthorOfPublication ba94d962-58f9-4c10-bdc8-667be0ec3b67
relation.isAuthorOfPublication.latestForDiscovery ba94d962-58f9-4c10-bdc8-667be0ec3b67
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
SiPAN simultaneous prediction and alignment of protein-protein interaction networks.pdf
Size:
637.48 KB
Format:
Adobe Portable Document Format
Description: